Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Embedded Random Matrix Ensembles in Quantum Physics, V.K.B. Kota


Варианты приобретения
Цена: 9781.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: V.K.B. Kota
Название:  Embedded Random Matrix Ensembles in Quantum Physics
ISBN: 9783319045665
Издательство: Springer
Классификация:



ISBN-10: 3319045660
Обложка/Формат: Soft cover
Страницы: 402
Вес: 0.63 кг.
Дата издания: 19.03.2014
Серия: Lecture Notes in Physics
Язык: English
Издание: 2014 ed.
Иллюстрации: 27 illustrations, color; 65 illustrations, black and white; xv, 402 p. 92 illus., 27 illus. in color.
Размер: 236 x 157 x 22
Читательская аудитория: Professional & vocational
Основная тема: Quantum Physics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book offers an exhaustive introduction to and survey of the use of embedded random matrix ensembles in quantum physics, developing the necessary concepts from the beginning, and guiding the reader to the frontiers of present-day research.


Ensembles on Configuration Space

Автор: Hall
Название: Ensembles on Configuration Space
ISBN: 3319341642 ISBN-13(EAN): 9783319341644
Издательство: Springer
Рейтинг:
Цена: 13555.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book describes a promising approach to problems in the foundations of quantum mechanics, including the measurement problem. The dynamics of ensembles on configuration space is shown here to be a valuable tool for unifying the formalisms of classical and quantum mechanics, for deriving and extending the latter in various ways, and for addressing the quantum measurement problem. A description of physical systems by means of ensembles on configuration space can be introduced at a very fundamental level: the basic building blocks are a configuration space, probabilities, and Hamiltonian equations of motion for the probabilities. The formalism can describe both classical and quantum systems, and their thermodynamics, with the main difference being the choice of ensemble Hamiltonian. Furthermore, there is a natural way of introducing ensemble Hamiltonians that describe the evolution of hybrid systems; i.e., interacting systems that have distinct classical and quantum sectors, allowing for consistent descriptions of quantum systems interacting with classical measurement devices and quantum matter fields interacting gravitationally with a classical spacetime.

The Limit Shape Problem for Ensembles of Young Diagrams

Автор: Akihito Hora
Название: The Limit Shape Problem for Ensembles of Young Diagrams
ISBN: 4431564853 ISBN-13(EAN): 9784431564850
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book treats ensembles of Young diagrams originating from group-theoretical contexts and investigates what statistical properties are observed there in a large-scale limit. The focus is mainly on analyzing the interesting phenomenon that specific curves appear in the appropriate scaling limit for the profiles of Young diagrams. This problem is regarded as an important origin of recent vital studies on harmonic analysis of huge symmetry structures. As mathematics, an asymptotic theory of representations is developed of the symmetric groups of degree n as n goes to infinity. The framework of rigorous limit theorems (especially the law of large numbers) in probability theory is employed as well as combinatorial analysis of group characters of symmetric groups and applications of Voiculescu's free probability. The central destination here is a clear description of the asymptotic behavior of rescaled profiles of Young diagrams in the Plancherel ensemble from both static and dynamic points of view.

Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics

Автор: Eu
Название: Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics
ISBN: 3319411462 ISBN-13(EAN): 9783319411460
Издательство: Springer
Рейтинг:
Цена: 23508.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts.Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respect to macroscopic fluxes or thermodynamic forces. Both irreversible Boltzmann and generalized Boltzmann equations are used for deriving theories of irreversible transport equations and generalized hydrodynamic equations, which rigorously conform to the tenet. All observables described by the so-formulated theories therefore also strictly obey the tenet.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия