Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Probabilistic Safety Assessment of WWER440 Reactors, Zoltan Kovacs


Варианты приобретения
Цена: 18284.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Zoltan Kovacs
Название:  Probabilistic Safety Assessment of WWER440 Reactors
ISBN: 9783319085470
Издательство: Springer
Классификация:



ISBN-10: 3319085476
Обложка/Формат: Hardcover
Страницы: 306
Вес: 0.65 кг.
Дата издания: 27.10.2014
Язык: English
Издание: 2014 ed.
Иллюстрации: 35 tables, black and white; 30 illustrations, color; 87 illustrations, black and white; xviii, 306 p. 117 illus., 30 illus. in color.
Размер: 234 x 156 x 19
Читательская аудитория: Professional & vocational
Основная тема: Nuclear Energy
Подзаголовок: Prediction, Quantification and Management of the Risk
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Introduction.- The nuclear power plant with WWER440 reactors.- Level 1 full power PSA.- Level 1 low power and shutdown PSA.- Level 2 PSA.- PSA applications.- Conclusions.


Probabilistic Graphical Models: Principles and Techniques

Автор: Koller Daphne, Friedman Nir
Название: Probabilistic Graphical Models: Principles and Techniques
ISBN: 0262013193 ISBN-13(EAN): 9780262013192
Издательство: MIT Press
Рейтинг:
Цена: 21161.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.

Most tasks require a person or an automated system to reason -- to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.

Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Probabilistic Techniques in Analysis

Автор: Bass
Название: Probabilistic Techniques in Analysis
ISBN: 0387943870 ISBN-13(EAN): 9780387943879
Издательство: Springer
Рейтинг:
Цена: 12012.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Exploring the use of techniques drawn from probability research to tackle problems in mathematical analysis, this study includes discussion of the construction of the Martin boundary, Dahlberg`s Theorem, probabilistic proofs of the boundary Harnack principle, and much more.

Probabilistic Models of Population Evolution

Автор: Pardoux
Название: Probabilistic Models of Population Evolution
ISBN: 3319303260 ISBN-13(EAN): 9783319303260
Издательство: Springer
Рейтинг:
Цена: 4611.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such a population is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications.

?tienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, stochastic partial differential equations, and probabilistic models in evolutionary biology and population genetics. He obtained his PhD in 1975 at University of Paris-Sud.
Bayesian Inference for Probabilistic Risk Assessment

Автор: Kelly
Название: Bayesian Inference for Probabilistic Risk Assessment
ISBN: 1849961867 ISBN-13(EAN): 9781849961868
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems.

Probabilistic Finite Element Model Updating Using Bayesian Statistics

Автор: Marwala Tshilidzi
Название: Probabilistic Finite Element Model Updating Using Bayesian Statistics
ISBN: 1119153034 ISBN-13(EAN): 9781119153030
Издательство: Wiley
Рейтинг:
Цена: 14565.00 р.
Наличие на складе: Поставка под заказ.

Описание: Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and Mechanical Engineering Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa Sondipon Adhikari, Swansea University, UK Covers the probabilistic finite element model based on Bayesian statistics with applications to aeronautical and mechanical engineering Finite element models are used widely to model the dynamic behaviour of many systems including in electrical, aerospace and mechanical engineering. The book covers probabilistic finite element model updating, achieved using Bayesian statistics. The Bayesian framework is employed to estimate the probabilistic finite element models which take into account of the uncertainties in the measurements and the modelling procedure.

The Bayesian formulation achieves this by formulating the finite element model as the posterior distribution of the model given the measured data within the context of computational statistics and applies these in aeronautical and mechanical engineering. Probabilistic Finite Element Model Updating Using Bayesian Statistics contains simple explanations of computational statistical techniques such as Metropolis-Hastings Algorithm, Slice sampling, Markov Chain Monte Carlo method, hybrid Monte Carlo as well as Shadow Hybrid Monte Carlo and their relevance in engineering. Key features: * Contains several contributions in the area of model updating using Bayesian techniques which are useful for graduate students.

* Explains in detail the use of Bayesian techniques to quantify uncertainties in mechanical structures as well as the use of Markov Chain Monte Carlo techniques to evaluate the Bayesian formulations. The book is essential reading for researchers, practitioners and students in mechanical and aerospace engineering.

Probabilistic prognostics and health management of energy systems.

Название: Probabilistic prognostics and health management of energy systems.
ISBN: 331955851X ISBN-13(EAN): 9783319558516
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes the formulation of an efficient methodology that estimates energy system uncertainty and predicts Remaining Useful Life (RUL) accurately with significantly reduced RUL prediction uncertainty.

Probabilistic Methods for Structural Design

Автор: Carlos Guedes Soares
Название: Probabilistic Methods for Structural Design
ISBN: 9401063664 ISBN-13(EAN): 9789401063661
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book contains contributions from various authors on different important topics related with probabilistic methods used for the design of structures. Initially several of the papers were prepared for advanced courses on structural reliability or on probabilistic methods for structural design.

Probabilistic Composition of Preferences, Theory and Applications

Автор: Annibal Parracho Sant`Anna
Название: Probabilistic Composition of Preferences, Theory and Applications
ISBN: 3319112767 ISBN-13(EAN): 9783319112763
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Multiple Criteria Decision Analysis.- Approaches to Criteria Combination.- The Probabilistic Approach to Preferences Measurement.- Computation of Probabilities of Preference.- Composition by Joint Probabilities.- Composition by DEA Distance to the Frontier.- Dynamic Probabilistic Indices.- Probabilities in the Problem of Classification.- Capacities Determination.- Rough Sets Modeling.- Application to FMEA Priority Assessments.- Appendix.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия