Algorithmic Foundations of Robotics XI, H. Levent Akin; Nancy M. Amato; Volkan Isler; A. F
Автор: David Hsu; Volkan Isler; Jean-Claude Latombe; Ming Название: Algorithmic Foundations of Robotics IX ISBN: 3642423825 ISBN-13(EAN): 9783642423826 Издательство: Springer Рейтинг: Цена: 30606.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book contains the proceedings of the 9th WAFR, held on December 13-15, 2010 at the National University of Singapore. The 24 papers included in this book span a wide variety of topics from new theoretical insights to novel applications.
Автор: Emilio Frazzoli; Tomas Lozano-Perez; Nicholas Roy; Название: Algorithmic Foundations of Robotics X ISBN: 3642362788 ISBN-13(EAN): 9783642362781 Издательство: Springer Рейтинг: Цена: 34937.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This is the proceedings of the tenth WAFR, held at Massachusetts Institute of Technology in June 2012. Its 37 papers address a broad range of topics, from fundamental theoretical issues in robot motion planning, control and perception, to novel applications.
Автор: Gregory S. Chirikjian; Howie Choset; Marco Morales Название: Algorithmic Foundations of Robotics VIII ISBN: 3642003117 ISBN-13(EAN): 9783642003110 Издательство: Springer Рейтинг: Цена: 36570.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Offers a collection of various topics in advanced robotics, including networked robots, distributed systems, manipulation, planning under uncertainty, minimalism, geometric sensing, geometric computation, stochastic planning methods, and medical applications. This title focuses on validation of algorithms, design concepts, and techniques.
Автор: Ricard Gavalda; Gabor Lugosi; Thomas Zeugmann; San Название: Algorithmic Learning Theory ISBN: 3642044131 ISBN-13(EAN): 9783642044137 Издательство: Springer Рейтинг: Цена: 12577.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The papers are divided into topical sections of papers on online learning, learning graphs, active learning and query learning, statistical learning, inductive inference, and semisupervised and unsupervised learning.
Автор: Michael Erdmann; David Hsu; Mark Overmars; A. Fran Название: Algorithmic Foundations of Robotics VI ISBN: 3642065139 ISBN-13(EAN): 9783642065132 Издательство: Springer Рейтинг: Цена: 30606.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Because actions in the physical world are subject to physical laws and geometric constraints, the design and analysis of robot algorithms raise a unique combination of questions in control theory, computational and differential geometry, and computer science.
Автор: Gregory S. Chirikjian; Howie Choset; Marco Morales Название: Algorithmic Foundations of Robotics VIII ISBN: 3642262171 ISBN-13(EAN): 9783642262173 Издательство: Springer Рейтинг: Цена: 36570.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book contains selected contributions to WAFR, the highly-competitive meeting on the algorithmic foundations of robotics. They address the unique combination of questions that the design and analysis of robot algorithms inspires.
Автор: Srinivas Akella; Nancy M. Amato; Wesley Huang; Bud Название: Algorithmic Foundation of Robotics VII ISBN: 3642087981 ISBN-13(EAN): 9783642087981 Издательство: Springer Рейтинг: Цена: 36570.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is comprised of thirty-two papers presented at the prestigious 2006 Workshop on the Algorithmic Foundations of Robotics. The papers span a wide variety of topics all related to the algorithmic problems of robotic systems.
Автор: Ortner Название: Algorithmic Learning Theory ISBN: 3319463780 ISBN-13(EAN): 9783319463780 Издательство: Springer Рейтинг: Цена: 8106.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the 27th International Conference on Algorithmic Learning Theory, ALT 2016, held in Bari, Italy, in October 2016, co-located with the 19th International Conference on Discovery Science, DS 2016. statistical learning, theory, evolvability; exact and interactive learning;
Описание: A typical prediction is based on observing similar situations in the past, knowing the outcomes of these past situations, and expecting that the future outcome of the current situation will be similar to these past observed outcomes.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru