Описание: Churn prediction, recognition, and mitigation have become essential topics in various industries. As a means for forecasting and manageing risk, further research in this field can greatly assist companies in making informed decisions based on future possible scenarios.Developing Churn Models Using Data Mining Techniques and Social Network Analysis provides an in-depth analysis of attrition modeling relevant to business planning and management. Through its insightful and detailed explanation of best practices, tools, and theory surrounding churn prediction and the integration of analytics tools, this publication is especially relevant to managers, data specialists, business analysts, academicians, and upper-level students.
Автор: Jiawei Han Название: Data Mining: Concepts and Techniques, ISBN: 0123814790 ISBN-13(EAN): 9780123814791 Издательство: Elsevier Science Рейтинг: Цена: 9720.00 р. Наличие на складе: Поставка под заказ.
Описание: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining.
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Автор: Burattin, Andrea Название: Process mining techniques in business environments ISBN: 3319174819 ISBN-13(EAN): 9783319174815 Издательство: Springer Рейтинг: Цена: 6708.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 1 Introduction.- Part I: State of the Art: BPM, Data Mining and Process Mining.- 2 Introduction to Business Processes, BPM, and BPM Systems.- 3 Data Generated by Information Systems (and How to Get It).- 4 Data Mining for Information System Data.- 5 Process Mining.- 6 Quality Criteria in Process Mining.- 7 Event Streams.- Part II: Obstacles to Process Mining in Practice.- 8 Obstacles to Applying Process Mining in Practice.- 9 Long-term View Scenario.- Part III: Process Mining as an Emerging Technology.- 10 Data Preparation.- 11 Heuristics Miner for Time Interval.- 12 Automatic Configuration of Mining Algorithm.- 13 User-Guided Discovery of Process Models.- 14 Extensions of Business Processes with Organizational Roles.- 15 Results Interpretation and Evaluation.- 16 Hands-On: Obtaining Test Data.- Part IV: A New Challenge in Process Mining.- 17 Process Mining for Stream Data Sources.- Part V: Conclusions and Future Work.- 18 Conclusions and Future Work.
Автор: Nadia Magnenat-Thalmann; Daniel Thalmann Название: Modelling and Motion Capture Techniques for Virtual Environments ISBN: 3540653538 ISBN-13(EAN): 9783540653530 Издательство: Springer Рейтинг: Цена: 9781.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The CAPTECH`98 workshop took place at the University of Geneva on November 26-27, 1998, sponsored by FIP Working Group 5.10 (Computer Graphics and Virtual Worlds) and the Suisse Romande regional doctoral seminar in computer science.
Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>
Автор: Nik Bessis; Ciprian Dobre Название: Big Data and Internet of Things: A Roadmap for Smart Environments ISBN: 3319344811 ISBN-13(EAN): 9783319344812 Издательство: Springer Рейтинг: Цена: 18284.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Foundations and Principles.- Advanced Models and Architectures.- Advanced Applications and Future Trends.
Автор: Kabir Chakraborty; Abhijit Chakrabarti Название: Soft Computing Techniques in Voltage Security Analysis ISBN: 8132223063 ISBN-13(EAN): 9788132223061 Издательство: Springer Рейтинг: Цена: 18284.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book focuses on soft computing techniques for enhancing voltage security in electrical power networks. The fundamental aim of this book is to present a comprehensive treatise on power system security and the simulation of power system security.
Описание: This book describes analytical techniques for optimizing knowledge acquisition, processing, and propagation, especially in the contexts of cyber-infrastructure and big data.
Автор: Moamar Sayed-Mouchaweh Название: Learning from Data Streams in Dynamic Environments ISBN: 3319256653 ISBN-13(EAN): 9783319256658 Издательство: Springer Рейтинг: Цена: 9141.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Also presents the problem of learning in non-stationary environments, its interests, its applications and challenges and studies the complementarities and the links between the different methods and techniques of learning in evolving and non-stationary environments.
Автор: Santi Caball?; Jordi Conesa Название: Software Data Engineering for Network eLearning Environments ISBN: 3319683179 ISBN-13(EAN): 9783319683171 Издательство: Springer Рейтинг: Цена: 16070.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents original research on analytics and context awareness with regard to providing sophisticated learning services for all stakeholders in the eLearning context. It offers essential information on the definition, modeling, development and deployment of services for these stakeholders. Data analysis has long-since been a cornerstone of eLearning, supplying learners, teachers, researchers, managers and policymakers with valuable information on learning activities and design. With the rapid development of Internet technologies and sophisticated online learning environments, increasing volumes and varieties of data are being generated, and data analysis has moved on to more complex analysis techniques, such as educational data mining and learning analytics. Now powered by cloud technologies, online learning environments are capable of gathering and storing massive amounts of data in various formats, of tracking user-system and user-user interactions, and of delivering rich contextual information.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru