Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning in Medicine, Ton J. Cleophas; Aeilko H. Zwinderman


Варианты приобретения
Цена: 9794.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-09-15
Ориентировочная дата поставки: Октябрь
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Ton J. Cleophas; Aeilko H. Zwinderman
Название:  Machine Learning in Medicine
ISBN: 9789402402605
Издательство: Springer
Классификация:




ISBN-10: 9402402608
Обложка/Формат: Paperback
Страницы: 224
Вес: 0.35 кг.
Дата издания: 30.04.2017
Язык: English
Размер: 234 x 156 x 13
Основная тема: Biomedicine
Подзаголовок: Part Three
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Offering sequenced guidance for non-specialists on how to reap the benefits of machine learning in medicine and healthcare, this text harnesses the power of cutting-edge computing to maximize the accessibility and analytic value of stored data and records.


The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 0387310738 ISBN-13(EAN): 9780387310732
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Statistical Learning for Biomedical Data

Автор: Malley
Название: Statistical Learning for Biomedical Data
ISBN: 0521699096 ISBN-13(EAN): 9780521699099
Издательство: Cambridge Academ
Рейтинг:
Цена: 6494.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontechnical language, using many examples and figures, and connects these new methods to familiar techniques.

Machine Learning in Medicine

Автор: Cleophas Ton J
Название: Machine Learning in Medicine
ISBN: 9400758235 ISBN-13(EAN): 9789400758230
Издательство: Springer
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Preface.- 1 Introduction to machine learning.- 2 Logistic regression for health profiling.- 3 Optimal scaling: discretization.- 4 Optimal scaling: regularization including ridge, lasso, and elastic net regression.- 5 Partial correlations.- 6 Mixed linear modelling.- 7 Binary partitioning.- 8 Item response modelling.- 9 Time-dependent predictor modelling.- 10 Seasonality assessments.- 11 Non-linear modelling.- 12 Artificial intelligence, multilayer Perceptron modelling.- 13 Artificial intelligence, radial basis function modelling.- 14 Factor analysis.- 15 Hierarchical cluster analysis for unsupervised data.- 16 Partial least squares.- 17 Discriminant analysis for Supervised data.- 18 Canonical regression.- 19 Fuzzy modelling.- 20 Conclusions. Index.

Machine Learning in Medicine

Автор: Ton J. Cleophas; Aeilko H. Zwinderman
Название: Machine Learning in Medicine
ISBN: 9400793634 ISBN-13(EAN): 9789400793637
Издательство: Springer
Рейтинг:
Цена: 9794.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This handy guide will help clinicians with computationally intensive methods, like factor analysis, cluster analysis, and discriminant analysis. It includes step by step data analyses in SPSS.

Machine Learning in Medicine

Автор: Ton J. Cleophas; Aeilko H. Zwinderman
Название: Machine Learning in Medicine
ISBN: 9400795122 ISBN-13(EAN): 9789400795129
Издательство: Springer
Рейтинг:
Цена: 9794.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This second of a two-volume work includes coverage of various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, genetic programming, association rule learning, anomaly detection and correspondence analysis.

Statistical and Machine-Learning Data Mining

Автор: Ratner Bruce
Название: Statistical and Machine-Learning Data Mining
ISBN: 1439860912 ISBN-13(EAN): 9781439860915
Издательство: Taylor&Francis
Рейтинг:
Цена: 9033.00 р.
Наличие на складе: Нет в наличии.

Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.

Introduction to High-Dimensional Statistics

Автор: Giraud
Название: Introduction to High-Dimensional Statistics
ISBN: 1482237946 ISBN-13(EAN): 9781482237948
Издательство: Taylor&Francis
Рейтинг:
Цена: 9645.00 р.
Наличие на складе: Нет в наличии.

Описание: Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians and data analysts and has required the development of new statistical methods capable of separating the signal from the noise. Introduction to High-Dimensional Statistics is a concise guide to state-of-the-art models, techniques, and approaches for handling high-dimensional data. The book is intended to expose the reader to the key concepts and ideas in the most simple settings possible while avoiding unnecessary technicalities. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this highly accessible text: Describes the challenges related to the analysis of high-dimensional data Covers cutting-edge statistical methods including model selection, sparsity and the lasso, aggregation, and learning theory Provides detailed exercises at the end of every chapter with collaborative solutions on a wikisite Illustrates concepts with simple but clear practical examples Introduction to High-Dimensional Statistics is suitable for graduate students and researchers interested in discovering modern statistics for massive data. It can be used as a graduate text or for self-study.

Statistical Learning with Sparsity

Автор: Hastie
Название: Statistical Learning with Sparsity
ISBN: 1498712169 ISBN-13(EAN): 9781498712163
Издательство: Taylor&Francis
Рейтинг:
Цена: 16843.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Discover New Methods for Dealing with High-Dimensional Data

A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data.

Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of 1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso.

In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.

Machine Learning Techniques for Multimedia

Автор: Matthieu Cord; P?draig Cunningham
Название: Machine Learning Techniques for Multimedia
ISBN: 3642443621 ISBN-13(EAN): 9783642443626
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it.

Handbook of Behavioral Medicine

Автор: Steptoe, Andrew
Название: Handbook of Behavioral Medicine
ISBN: 1441964835 ISBN-13(EAN): 9781441964830
Издательство: Springer
Рейтинг:
Цена: 25155.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This handbook provides an up-to-date survey of methods and applications across the broad range of behavioral medicine research and practice. It is based on cutting-edge methodologies and applications that are relevant across different medical conditions.

Bayesian Reasoning and Machine Learning

Автор: Barber
Название: Bayesian Reasoning and Machine Learning
ISBN: 0521518148 ISBN-13(EAN): 9780521518147
Издательство: Cambridge Academ
Рейтинг:
Цена: 11088.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This practical introduction for final-year undergraduate and graduate students is ideally suited to computer scientists without a background in calculus and linear algebra. Numerous examples and exercises are provided. Additional resources available online and in the comprehensive software package include computer code, demos and teaching materials for instructors.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия