Approximation with Positive Linear Operators and Linear Combinations, Vijay Gupta; Gancho Tachev
Автор: Lopez Gomez Julian Название: Linear Second Order Elliptic Operators ISBN: 9814440248 ISBN-13(EAN): 9789814440240 Издательство: World Scientific Publishing Цена: 7286.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The main goal of the book is to provide a comprehensive and self-contained proof of the, relatively recent, theorem of characterization of the strong maximum principle due to Molina-Meyer and the author, published in Diff. Int. Eqns. in 1994, which was later refined by Amann and the author in a paper published in J. of Diff. Eqns. in 1998. Besides this characterization has been shown to be a pivotal result for the development of the modern theory of spatially heterogeneous nonlinear elliptic and parabolic problems; it has allowed us to update the classical theory on the maximum and minimum principles by providing with some extremely sharp refinements of the classical results of Hopf and Protter-Weinberger. By a celebrated result of Berestycki, Nirenberg and Varadhan, Comm. Pure Appl. Maths. in 1994, the characterization theorem is partially true under no regularity constraints on the support domain for Dirichlet boundary conditions.Instead of encyclopedic generality, this book pays special attention to completeness, clarity and transparency of its exposition so that it can be taught even at an advanced undergraduate level. Adopting this perspective, it is a textbook; however, it is simultaneously a research monograph about the maximum principle, as it brings together for the first time in the form of a book, the most paradigmatic classical results together with a series of recent fundamental results scattered in a number of independent papers by the author of this book and his collaborators.Chapters 3, 4, and 5 can be delivered as a classical undergraduate, or graduate, course in Hilbert space techniques for linear second order elliptic operators, and Chaps. 1 and 2 complete the classical results on the minimum principle covered by the paradigmatic textbook of Protter and Weinberger by incorporating some recent classification theorems of supersolutions by Walter, 1989, and the author, 2003. Consequently, these five chapters can be taught at an undergraduate, or graduate, level. Chapters 6 and 7 study the celebrated theorem of Krein-Rutman and infer from it the characterizations of the strong maximum principle of Molina-Meyer and Amann, in collaboration with the author, which have been incorporated to a textbook by the first time here, as well as the results of Chaps. 8 and 9, polishing some recent joint work of Cano-Casanova with the author. Consequently, the second half of the book consists of a more specialized monograph on the maximum principle and the underlying principal eigenvalues.
Автор: Bede Название: Approximation by Max-Product Type Operators ISBN: 331934188X ISBN-13(EAN): 9783319341880 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph presents a broad treatment of developments in an area of constructive approximation involving the so-called 'max-product' type operators. The exposition highlights the max-product operators as those which allow one to obtain, in many cases, more valuable estimates than those obtained by classical approaches. The text considers a wide variety of operators which are studied for a number of interesting problems such as quantitative estimates, convergence, saturation results, localization, to name several.Additionally, the book discusses the perfect analogies between the probabilistic approaches of the classical Bernstein type operators and of the classical convolution operators (non-periodic and periodic cases), and the possibilistic approaches of the max-product variants of these operators. These approaches allow for two natural interpretations of the max-product Bernstein type operators and convolution type operators: firstly, as possibilistic expectations of some fuzzy variables, and secondly, as bases for the Feller type scheme in terms of the possibilistic integral. These approaches also offer new proofs for the uniform convergence based on a Chebyshev type inequality in the theory of possibility.Researchers in the fields of approximation of functions, signal theory, approximation of fuzzy numbers, image processing, and numerical analysis will find this book most beneficial. This book is also a good reference for graduates and postgraduates taking courses in approximation theory.
Описание: This book contains a collection of research articles and surveys on recent developments on operator theory as well as its applications covered in the IWOTA 2011 conference held at Sevilla University in the summer of 2011.
Описание: The publication of Oberwolfach conference books was initiated by Birkhauser Publishers in 1964 with the proceedings of the conference `On Approximation Theory`, conducted by P.
Автор: Paul Leo Butzer; Hubert Berens Название: Semi-Groups of Operators and Approximation ISBN: 3642460682 ISBN-13(EAN): 9783642460685 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The applications of the theory not only permit integration of a series of diverse questions from many domains of mathematical analysis but also lead to significant new results on classical approximation theory, on the initial and boundary behavior of solutions of partial differential equations, and on the theory of singular integrals.
Автор: Vladimir M?ller Название: Spectral Theory of Linear Operators ISBN: 3764382643 ISBN-13(EAN): 9783764382643 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. This book contains results, in particular, concerning orbits and their relations to the invariant subspace problem. It is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras.
Автор: Jan van Neerven Название: The Asymptotic Behaviour of Semigroups of Linear Operators ISBN: 3034899440 ISBN-13(EAN): 9783034899444 Издательство: Springer Рейтинг: Цена: 18161.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Over the past ten years, the asymptotic theory of one-parameter semigroups of operators has witnessed an explosive development. A number oflong-standing open problems have recently been solved and the theory seems to have obtained a certain degree of maturity. These notes, based on a course delivered at the University of Tiibingen in the academic year 1994-1995, represent a first attempt to organize the available material, most of which exists only in the form of research papers. If A is a bounded linear operator on a complex Banach space X, then it is an easy consequence of the spectral mapping theorem exp(tO"(A)) = O"(exp(tA)), t E JR, and Gelfand's formula for the spectral radius that the uniform growth bound of the wt family {exp(tA)h o, i. e. the infimum of all wE JR such that II exp(tA)II:::: Me for some constant M and all t 2: 0, is equal to the spectral bound s(A) = sup{Re A: A E O"(A)} of A. This fact is known as Lyapunov's theorem. Its importance resides in the fact that the solutions of the initial value problem du(t) =A () dt u t, u(O) = x, are given by u(t) = exp(tA)x. Thus, Lyapunov's theorem implies that the expo- nential growth of the solutions of the initial value problem associated to a bounded operator A is determined by the location of the spectrum of A.
Автор: Norbert Ortner; Peter Wagner Название: Fundamental Solutions of Linear Partial Differential Operators ISBN: 3319367994 ISBN-13(EAN): 9783319367996 Издательство: Springer Рейтинг: Цена: 13275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph provides the theoretical foundations needed for the construction of fundamental solutions and fundamental matrices of (systems of) linear partial differential equations.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru