Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Introduction to MATLAB, Sandeep Nagar


Варианты приобретения
Цена: 3492.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Sandeep Nagar
Название:  Introduction to MATLAB
ISBN: 9781484231883
Издательство: Springer
Классификация:



ISBN-10: 1484231880
Обложка/Формат: Paperback
Страницы: 150
Вес: 0.33 кг.
Дата издания: 28.11.2017
Язык: English
Издание: 1st ed.
Иллюстрации: 25 illustrations, color; 1 illustrations, black and white; xii, 200 p. 26 illus., 25 illus. in color.
Размер: 159 x 235 x 16
Читательская аудитория: Tertiary education (us: college)
Основная тема: Computer Science
Подзаголовок: Solutions for numerical computationгївївѕ and modelingгївївѕ
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Familiarize yourself with MATLAB using this concise, practical tutorial that is focused on writing code to learn concepts. Starting from the basics, this book covers array-based computing, plotting and working with files, numerical computation formalism, and the primary concepts of approximations. Introduction to MATLAB is useful for industry engineers, researchers, and students who are looking for open-source solutions for numerical computation.
In this book you will learn by doing, avoiding technical jargon, which makes the concepts easy to learn. First youll see how to run basic calculations, absorbing technical complexities incrementally as you progress toward advanced topics. Throughout, the language is kept simple to ensure that readers at all levels can grasp the concepts.

What Youll Learn
  • Apply sample code to your engineering or science problems
  • Work with MATLAB arrays, functions, and loops
  • Use MATLABs plotting functions for data visualization
  • Solve numerical computing and computational engineering problems with a MATLAB case study

Who This Book Is For
Engineers, scientists, researchers, and students who are new to MATLAB. Some prior programming experience would be helpful but not required.




Introduction to High Performance Computing for Scientists and Engineers

Автор: Hager
Название: Introduction to High Performance Computing for Scientists and Engineers
ISBN: 143981192X ISBN-13(EAN): 9781439811924
Издательство: Taylor&Francis
Рейтинг:
Цена: 12095.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Written by HPC experts, this book provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. It facilitates an intuitive understanding of performance limitations without relying on heavy computer science knowledge.

Mathematical Introduction to Compressive Sensing

Автор: Foucart Simon
Название: Mathematical Introduction to Compressive Sensing
ISBN: 0817649476 ISBN-13(EAN): 9780817649470
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

Introduction to Probability with Statistical Applications

Автор: Schay G.
Название: Introduction to Probability with Statistical Applications
ISBN: 3319306189 ISBN-13(EAN): 9783319306186
Издательство: Springer
Рейтинг:
Цена: 9362.00 р.
Наличие на складе: Поставка под заказ.

Описание: Now inits second edition, this textbook serves as an introduction toprobability and statistics for non-mathematics majors who do not need theexhaustive detail and mathematical depth provided in more comprehensivetreatments of the subject. The presentation covers the mathematical laws ofrandom phenomena, including discrete and continuous random variables,expectation and variance, and common probability distributions such as thebinomial, Poisson, and normal distributions. More classical examples such asMontmort's problem, the ballot problem, and Bertrand’s paradox are nowincluded, along with applications such as the Maxwell-Boltzmann andBose-Einstein distributions in physics.Keyfeatures in new edition:* 35 newexercises* Expanded sectionon the algebra of sets *Expanded chapters on probabilities to include more classical examples* Newsection on regression* Onlineinstructors' manual containing solutions to all exercises

Introduction to data science.

Автор: Igual, Laura, Segu?, Santi
Название: Introduction to data science.
ISBN: 3319500163 ISBN-13(EAN): 9783319500164
Издательство: Springer
Рейтинг:
Цена: 6841.00 р.
Наличие на складе: Поставка под заказ.

Описание: The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis.

Introduction to Deep Learning Using R

Автор: Taweh Beysolow II
Название: Introduction to Deep Learning Using R
ISBN: 1484227336 ISBN-13(EAN): 9781484227336
Издательство: Springer
Рейтинг:
Цена: 5309.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Understand deep learning, the nuances of its different models, and where these models can be applied.

The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools.

What You Will Learn:

  • Understand the intuition and mathematics that power deep learning models
  • Utilize various algorithms using the R programming language and its packages
  • Use best practices for experimental design and variable selection
  • Practice the methodology to approach and effectively solve problems as a data scientist
  • Evaluate the effectiveness of algorithmic solutions and enhance their predictive power


Who this book is for:
Students, researchers, and data scientists who are familiar with programming using R. This book also is also of use for those who wish to learn how to appropriately deploy these algorithms in applications where they would be most useful.



ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия