Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Assessing and Improving Prediction and Classification, Timothy Masters


Варианты приобретения
Цена: 7685.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Timothy Masters
Название:  Assessing and Improving Prediction and Classification
ISBN: 9781484233351
Издательство: Springer
Классификация:




ISBN-10: 1484233352
Обложка/Формат: Paperback
Страницы: 430
Вес: 0.92 кг.
Дата издания: 20.12.2017
Язык: English
Издание: 1st ed.
Иллюстрации: 8 illustrations, color; 18 illustrations, black and white; xiv, 326 p. 26 illus., 8 illus. in color.
Размер: 184 x 268 x 34
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: Using C++, Algorithms, Data and Statistics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Assess the quality of your prediction and classification models in ways that accurately reflect their real-world performance, and then improve this performance using state-of-the-art algorithms such as committee-based decision making, resampling the dataset, and boosting. This book presents many important techniques for building powerful, robust models and quantifying their expected behavior when put to work in your application.
Considerable attention is given to information theory, especially as it relates to discovering and exploiting relationships between variables employed by your models. This presentation of an often confusing subject avoids advanced mathematics, focusing instead on concepts easily understood by those with modest background in mathematics.
All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code. Many of these techniques are recent developments, still not in widespread use. Others are standard algorithms given a fresh look. In every case, the emphasis is on practical applicability, with all code written in such a way that it can easily be included in any program.

What Youll Learn
  • Compute entropy to detect problematic predictors.
  • Compute confidence and tolerance intervals for predictions, as well as confidence levels for classification decisions.
  • Improve numeric predictions using constrained and unconstrained combinations, variance-weighted interpolation, and kernel-regression smoothing.
  • Improve classification decisions using Borda counts, MinMax and MaxMin rules, union and intersection rules, logistic regression, selection by local accuracy, maximization of the fuzzy integral, and pairwise coupling.
  • Use information-theoretic techniques to rapidly screen large numbers of candidate predictors, identifying those that are especially promising.
  • Use Monte-Carlo permutation methods to assess the role of good luck in performance results.


Who This Book is For
Anyone who creates prediction or classification models will find a wealth of useful algorithms in this book. Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.



Unsupervised Classification

Автор: Sanghamitra Bandyopadhyay; Sriparna Saha
Название: Unsupervised Classification
ISBN: 3642428363 ISBN-13(EAN): 9783642428364
Издательство: Springer
Рейтинг:
Цена: 6981.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers a theoretical analysis of symmetry-based clustering techniques. It includes extensive real-world applications in data mining, remote sensing imaging, MR brain imaging, gene expression data analysis, and face detection.

Topic Detection and Classification in Social Networks

Автор: Dimitrios Milioris
Название: Topic Detection and Classification in Social Networks
ISBN: 3319664131 ISBN-13(EAN): 9783319664132
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Introduction.- Background and Related Work.- Joint Sequence Complexity.- Text Classification via Compressive Sensing.- Extension of Joint Complexity and Compressive Sensing.- Conclusion.

Inductive Inference for Large Scale Text Classification

Автор: Catarina Silva; Bernadete Ribeiro
Название: Inductive Inference for Large Scale Text Classification
ISBN: 3642261345 ISBN-13(EAN): 9783642261343
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains and illustrates key methods in inductive inference in large scale text classification, especially kernel approaches. It covers a series of new techniques to enhance, scale and distribute text classification tasks.

Prediction and Classification of Respiratory Motion

Автор: Suk Jin Lee; Yuichi Motai
Название: Prediction and Classification of Respiratory Motion
ISBN: 3642415083 ISBN-13(EAN): 9783642415081
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines current radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems. The proposed method improves treatments by considering breathing pattern for accurate dose calculation.

Prediction and Classification of Respiratory Motion

Автор: Suk Jin Lee; Yuichi Motai
Название: Prediction and Classification of Respiratory Motion
ISBN: 3662510642 ISBN-13(EAN): 9783662510643
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines current radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems. The proposed method improves treatments by considering breathing pattern for accurate dose calculation.

The Statistical Evaluation of Medical Tests for Classification and Prediction

Автор: Pepe, Margaret Sullivan
Название: The Statistical Evaluation of Medical Tests for Classification and Prediction
ISBN: 0198565828 ISBN-13(EAN): 9780198565826
Издательство: Oxford Academ
Рейтинг:
Цена: 14573.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book describes statistical techniques for the design and evaluation of research studies on medical diagnostic tests, screening tests, biomarkers and new technologies for classification and prediction in medicine.

ECG Signal Processing, Classification and Interpretation

Автор: Adam Gacek; Witold Pedrycz
Название: ECG Signal Processing, Classification and Interpretation
ISBN: 1447159209 ISBN-13(EAN): 9781447159209
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The volume shows how the various paradigms of computational intelligence, employed individually or in combination, can produce an effective structure for obtaining often vital information from ECG signals.

Soft Computing Approach to Pattern Classification and Object Recognition

Автор: Kumar S. Ray
Название: Soft Computing Approach to Pattern Classification and Object Recognition
ISBN: 1489990100 ISBN-13(EAN): 9781489990105
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Soft Computing Approach to Pattern Classification and Object Recognition establishes an innovative, unified approach to supervised pattern classification and model-based occluded object recognition.

Machine Learning Models and Algorithms for Big Data Classification

Автор: Shan Suthaharan
Название: Machine Learning Models and Algorithms for Big Data Classification
ISBN: 1489978526 ISBN-13(EAN): 9781489978523
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents machine learning models and algorithms to address big data classification problems. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The third part presents the topics required to understand and select machine learning techniques to classify big data.

Classification, (Big) Data Analysis and Statistical Learning

Автор: Francesco Mola; Claudio Conversano; Maurizio Vichi
Название: Classification, (Big) Data Analysis and Statistical Learning
ISBN: 3319557076 ISBN-13(EAN): 9783319557076
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This edited book focuses on the latest developments in classification, statistical learning, data analysis and related areas of data science, including statistical analysis of large datasets, big data analytics, time series clustering, integration of data from different sources, as well as social networks. It covers both methodological aspects as well as applications to a wide range of areas such as economics, marketing, education, social sciences, medicine, environmental sciences and the pharmaceutical industry. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field. The peer-reviewed contributions were presented at the 10th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in Santa Margherita di Pula (Cagliari), Italy, October 8–10, 2015.

Inductive Inference for Large Scale Text Classification

Автор: Catarina Silva; Bernadete Ribeiro
Название: Inductive Inference for Large Scale Text Classification
ISBN: 3642045324 ISBN-13(EAN): 9783642045325
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains and illustrates key methods in inductive inference in large scale text classification, especially kernel approaches. It covers a series of new techniques to enhance, scale and distribute text classification tasks.

Minimum Error Entropy Classification

Автор: Joaquim P. Marques de S?; Lu?s M.A. Silva; Jorge M
Название: Minimum Error Entropy Classification
ISBN: 3642437427 ISBN-13(EAN): 9783642437427
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains the minimum error entropy (MEE) concept applied to data classification machines. Discusses theoretical results, offers a clustering algorithm using a MEE-like concept, and includes tests, evaluation experiments and comparative applications.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия