Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine-learning Techniques in Economics, Atin Basuchoudhary; James T. Bang; Tinni Sen


Варианты приобретения
Цена: 7685.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Atin Basuchoudhary; James T. Bang; Tinni Sen
Название:  Machine-learning Techniques in Economics
ISBN: 9783319690131
Издательство: Springer
Классификация:






ISBN-10: 3319690132
Обложка/Формат: Paperback
Страницы: 86
Вес: 0.15 кг.
Дата издания: 08.01.2018
Серия: SpringerBriefs in Economics
Язык: English
Издание: 1st ed. 2018
Иллюстрации: 19 tables, color; 19 illustrations, color; 1 illustrations, black and white; vi, 86 p. 20 illus., 19 illus. in color.
Размер: 234 x 156 x 5
Читательская аудитория: Postgraduate, research & scholarly
Основная тема: Economics
Подзаголовок: New Tools for Predicting Economic Growth
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book develops a machine-learning framework for predicting economic growth. While machine learning itself is not a new idea, advances in computing technology combined with a dawning realization of its applicability to economic questions makes it a new tool for economists.


The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

Machine Learning Techniques for Multimedia

Автор: Matthieu Cord; P?draig Cunningham
Название: Machine Learning Techniques for Multimedia
ISBN: 3642443621 ISBN-13(EAN): 9783642443626
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it.

Data Mining: Concepts and Techniques,

Автор: Jiawei Han
Название: Data Mining: Concepts and Techniques,
ISBN: 0123814790 ISBN-13(EAN): 9780123814791
Издательство: Elsevier Science
Рейтинг:
Цена: 9720.00 р.
Наличие на складе: Поставка под заказ.

Описание: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining.

Econophysics & Economics of Games, Social Choices and Quantitative Techniques

Автор: Banasri Basu; Bikas K. Chakrabarti; Satya R. Chakr
Название: Econophysics & Economics of Games, Social Choices and Quantitative Techniques
ISBN: 8847058074 ISBN-13(EAN): 9788847058071
Издательство: Springer
Рейтинг:
Цена: 24456.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Econophysics of Games and Social Choices.- Kolkata Paise Restaurant Problem in Some Uniform Learning Strategy Limits.- Cycle Monotonicity in Scheduling Models.- Reinforced Learning in Market Games.- Mechanisms Supporting Cooperation for the Evolutionary Prisoner's Dilemma Games.- Economic Applications of Quantum Information Processing.- Using Many-Body Entanglement for Coordinated Action in Game Theory Problems.- Condensation Phenomena and Pareto Distribution in Disordered Urn Models.- Economic Interactions and the Distribution of Wealth.- Wealth Redistribution in Boltzmann-like Models of Conservative Economies.- Multi-species Models in Econo- and Sociophysics.- The Morphology of Urban Agglomerations for Developing Countries: A Case Study with China.- A Mean-Field Model of Financial Markets: Reproducing Long Tailed Distributions and Volatility Correlations.- Statistical Properties of Fluctuations: A Method to Check Market Behavior.- Modeling Saturation in Industrial Growth.- The Kuznets Curve and the Inequality Process.- Monitoring the Teaching - Learning Process via an Entropy Based Index.- Technology Level in the Industrial Supply Chain: Thermodynamic Concept.- Discussions and Comments in Econophys Kolkata IV.- Contributions to Quantitative Economics.- On Multi-Utility Representation of Equitable Intergenerational Preferences.- Variable Populations and Inequality-Sensitive Ethical Judgments.- A Model of Income Distribution.- Statistical Database of the Indian Economy: Need for New Directions.- Does Parental Education Protect Child Health? Some Evidence from Rural Udaipur.- Food Security and Crop Diversification: Can West Bengal Achieve Both?.- Estimating Equivalence Scales Through Engel Curve Analysis.- Testing for Absolute Convergence: A Panel Data Approach.- Goodwin's Growth Cycles: A Reconsideration.- Human Capital Accumulation, Economic Growth and Educational Subsidy Policy in a Dual Economy.- Arms Trade and Conflict Resolution: A Trade-Theoretic Analysis.- Trade andWage Inequality with Endogenous Skill Formation.- Dominant Strategy Implementation in Multi-unit Allocation Problems.- Allocation through Reduction on Minimum Cost Spanning Tree Games.- Unmediated and Mediated Communication Equilibria of Battle of the Sexes with Incomplete Information.- A Characterization Result on the Coincidence of the Prenucleolus and the Shapley Value.- The Ordinal Equivalence of the Johnston Index and the Established Notions of Power.- Reflecting on Market Size and Entry under Oligopoly.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 9262.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book
Data Mining: Practical Machine Learning Tools and Techniques,

Автор: Ian H. Witten
Название: Data Mining: Practical Machine Learning Tools and Techniques,
ISBN: 0123748569 ISBN-13(EAN): 9780123748560
Издательство: Elsevier Science
Рейтинг:
Цена: 8695.00 р.
Наличие на складе: Поставка под заказ.

Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>

Statistical and Machine-Learning Data Mining

Автор: Ratner Bruce
Название: Statistical and Machine-Learning Data Mining
ISBN: 1439860912 ISBN-13(EAN): 9781439860915
Издательство: Taylor&Francis
Рейтинг:
Цена: 9033.00 р.
Наличие на складе: Поставка под заказ.

Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия