Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, J?rgen Fuhrmann; Mario Ohlberger; Christian Rohde


Варианты приобретения
Цена: 22359.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: J?rgen Fuhrmann; Mario Ohlberger; Christian Rohde
Название:  Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems
ISBN: 9783319055909
Издательство: Springer
Классификация:




ISBN-10: 3319055909
Обложка/Формат: Hardcover
Страницы: 518
Вес: 1.19 кг.
Дата издания: 03.06.2014
Серия: Springer proceedings in mathematics and statistics
Язык: English
Иллюстрации: 80 illustrations, color; 83 illustrations, black and white; xviii, 518 p. 163 illus., 80 illus. in color.
Размер: 234 x 156 x 41
Читательская аудитория: Professional & vocational
Основная тема: Mathematics
Подзаголовок: FVCA 7, Berlin, June 2014
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The methods considered in the 7th conference on Finite Volumes for Complex Applications (Berlin, June 2014) have properties which offer distinct advantages for a number of applications.


Elliptic–Hyperbolic Partial Differential Equations

Автор: Thomas H. Otway
Название: Elliptic–Hyperbolic Partial Differential Equations
ISBN: 3319197606 ISBN-13(EAN): 9783319197609
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems

Автор: J?rgen Fuhrmann; Mario Ohlberger; Christian Rohde
Название: Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems
ISBN: 3319382888 ISBN-13(EAN): 9783319382883
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications.

Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems

Автор: Cl?ment Canc?s; Pascal Omnes
Название: Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
ISBN: 3319573934 ISBN-13(EAN): 9783319573939
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book is the second volume of proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017). It includes reviewed contributions reporting successful applications in the fields of fluid dynamics, computational geosciences, structural analysis, nuclear physics, semiconductor theory and other topics.

The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.

The book is useful for researchers, PhD and master's level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as for engineers working in numerical modeling and simulations.

Geometric Properties for Parabolic and Elliptic PDE`s

Автор: Gazzola
Название: Geometric Properties for Parabolic and Elliptic PDE`s
ISBN: 3319415360 ISBN-13(EAN): 9783319415369
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book collects recent research papers by respected specialists in the field. It presents advances in the field of geometric properties for parabolic and elliptic partial differential equations, an area that has always attracted great attention. It settles the basic issues (existence, uniqueness, stability and regularity of solutions of initial/boundary value problems) before focusing on the topological and/or geometric aspects. These topics interact with many other areas of research and rely on a wide range of mathematical tools and techniques, both analytic and geometric. The Italian and Japanese mathematical schools have a long history of research on PDEs and have numerous active groups collaborating in the study of the geometric properties of their solutions.

Geometric Properties for Parabolic and Elliptic PDE`s

Автор: Rolando Magnanini; Shigeru Sakaguchi; Angelo Alvin
Название: Geometric Properties for Parabolic and Elliptic PDE`s
ISBN: 8847056128 ISBN-13(EAN): 9788847056121
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This inclusive study of projective geometry covers analytic and synthetic methods, takes in linear, quadratic, cubic and quartic figures in various dimensions, and deals at length with refinements of basic theories, including those of Pappus and Desargues.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия