Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning, Fr?d?ric Jean
Автор: John Baillieul; A.M. Bloch; Peter Crouch; Jerrold Название: Nonholonomic Mechanics and Control ISBN: 1493938215 ISBN-13(EAN): 9781493938216 Издательство: Springer Рейтинг: Цена: 9781.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints.
Автор: Woojin Chung Название: Nonholonomic Manipulators ISBN: 3642060471 ISBN-13(EAN): 9783642060472 Издательство: Springer Рейтинг: Цена: 20263.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This focused monograph builds upon an increasing interest in nonholonomic mechanical systems in robotics and control engineering. It covers the definition and development of new nonholonomic machines designed on the basis of nonlinear control theory for nonholonomic mechanical systems.
Автор: Gianna Stefani; Ugo Boscain; Jean-Paul Gauthier; A Название: Geometric Control Theory and Sub-Riemannian Geometry ISBN: 3319350250 ISBN-13(EAN): 9783319350257 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presenting state-of-the-art research in a highly applicable field, this collection features papers by leading scientists combining these two methodologies, in honor of the groundbreaking work of Andrei Agrachev. It includes a chapter on open problems.
Автор: Thierry Aubin Название: Some Nonlinear Problems in Riemannian Geometry ISBN: 364208236X ISBN-13(EAN): 9783642082368 Издательство: Springer Рейтинг: Цена: 18161.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: During the last few years, the field of nonlinear problems has undergone great development. This book consisting of the updated Grundlehren volume 252 by the author and of a newly written part, deals with some important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved. Each problem is explained, up-to-date results are given and proofs are presented. Thus, the reader is given access, for each specific problem, to its present status of solution as well as to the most up-to-date methods for approaching it. The main objective of the book is to explain some methods and new techniques, and to apply them. It deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber.
Автор: Zexiang Li; J.F. Canny Название: Nonholonomic Motion Planning ISBN: 1461363926 ISBN-13(EAN): 9781461363927 Издательство: Springer Рейтинг: Цена: 15672.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Nonholonomic Motion Planning can be used either as a reference for researchers working in the areas of robotics, nonlinear control and differential geometry, or as a textbook for a graduate level robotics or nonlinear control course.
Автор: J. Baillieul; A.M. Bloch; P. Crouch; J. Marsden Название: Nonholonomic Mechanics and Control ISBN: 1441930434 ISBN-13(EAN): 9781441930439 Издательство: Springer Рейтинг: Цена: 9357.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints.
Автор: Gianna Stefani; Ugo Boscain; Jean-Paul Gauthier; A Название: Geometric Control Theory and Sub-Riemannian Geometry ISBN: 3319021311 ISBN-13(EAN): 9783319021317 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presenting state-of-the-art research in a highly applicable field, this collection features papers by leading scientists combining these two methodologies, in honor of the groundbreaking work of Andrei Agrachev. It includes a chapter on open problems.
Автор: Andre Bellaiche; Jean-Jaques Risler Название: Sub-Riemannian Geometry ISBN: 3034899467 ISBN-13(EAN): 9783034899468 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely: - control theory - classical mechanics - Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) - diffusion on manifolds - analysis of hypoelliptic operators - Cauchy-Riemann (or CR) geometry. Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics. This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists: - Andre Bellaiche: The tangent space in sub-Riemannian geometry - Mikhael Gromov: Carnot-Caratheodory spaces seen from within - Richard Montgomery: Survey of singular geodesics - Hector J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers - Jean-Michel Coron: Stabilization of controllable systems
Автор: J?rgen Jost Название: Nonlinear Methods in Riemannian and K?hlerian Geometry ISBN: 3034877080 ISBN-13(EAN): 9783034877084 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Let us Iist some of the most important ones: - harmonic maps between Riemannian and Kahlerian manifolds - minimal surfaces in Riemannian manifolds - Monge-Ampere equations on Kahler manifolds - Yang-Mills equations in vector bundles over manifolds.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru