Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Elements of the Representation Theory of the Jacobi Group, Rolf Berndt; Ralf Schmidt


Варианты приобретения
Цена: 11179.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Rolf Berndt; Ralf Schmidt
Название:  Elements of the Representation Theory of the Jacobi Group
ISBN: 9783034897686
Издательство: Springer
Классификация:

ISBN-10: 3034897685
Обложка/Формат: Paperback
Страницы: 216
Вес: 0.34 кг.
Дата издания: 23.08.2014
Серия: Progress in Mathematics
Язык: English
Размер: 234 x 156 x 13
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии


Representation theory and complex geometry

Автор: Chriss, Neil Ginzburg, Victor
Название: Representation theory and complex geometry
ISBN: 0817649379 ISBN-13(EAN): 9780817649371
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: "The book is largely self-contained...There is a nice introduction to symplectic geometry and a charming exposition of equivariant K-theory. This is the only available introduction to geometric representation theory...it has already proved successful in introducing a new generation to the subject."

Modular Representation Theory of Finite Groups

Автор: Schneider Peter
Название: Modular Representation Theory of Finite Groups
ISBN: 1447148312 ISBN-13(EAN): 9781447148319
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Representation theory studies maps from groups into the general linear group of a finite-dimensional vector space.

Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields

Автор: Hatice Boylan
Название: Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields
ISBN: 3319129155 ISBN-13(EAN): 9783319129150
Издательство: Springer
Рейтинг:
Цена: 4890.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields.

Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions

Автор: Stephen C. Milne
Название: Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions
ISBN: 1441952136 ISBN-13(EAN): 9781441952134
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 years to Diophantus, and continues more recently with the works of Fermat, Euler, Lagrange, Jacobi, Glaisher, Ramanujan, Hardy, Mordell, Andrews, and others. Jacobi's elliptic function approach dates from his epic Fundamenta Nova of 1829. Here, the author employs his combinatorial/elliptic function methods to derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's (1829) 4 and 8 squares identities to 4n2 or 4n(n+1) squares, respectively, without using cusp forms such as those of Glaisher or Ramanujan for 16 and 24 squares. These results depend upon new expansions for powers of various products of classical theta functions. This is the first time that infinite families of non-trivial exact explicit formulas for sums of squares have been found.

The author derives his formulas by utilizing combinatorics to combine a variety of methods and observations from the theory of Jacobi elliptic functions, continued fractions, Hankel or Turanian determinants, Lie algebras, Schur functions, and multiple basic hypergeometric series related to the classical groups. His results (in Theorem 5.19) generalize to separate infinite families each of the 21 of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions in sections 40-42 of the Fundamental Nova. The author also uses a special case of his methods to give a derivation proof of the two Kac and Wakimoto (1994) conjectured identities concerning representations of a positive integer by sums of 4n2 or 4n(n+1) triangular numbers, respectively. These conjectures arose in the study of Lie algebras and have also recently been proved by Zagier using modular forms. George Andrews says in a preface of this book, This impressive work will undoubtedly spur others both in elliptic functions and in modular forms to build on these wonderful discoveries.'

Audience: This research monograph on sums of squares is distinguished by its diversity of methods and extensive bibliography. It contains both detailed proofs and numerous explicit examples of the theory. This readable work will appeal to both students and researchers in number theory, combinatorics, special functions, classical analysis, approximation theory, and mathematical physics.

Group Representation for Quantum Theory

Автор: Hayashi
Название: Group Representation for Quantum Theory
ISBN: 3319449044 ISBN-13(EAN): 9783319449043
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains the group representation theory for quantum theory in the language of quantum theory. As is well known, group representation theory is very strong tool for quantum theory, in particular, angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, quark model, quantum optics, and quantum information processing including quantum error correction. To describe a big picture of application of representation theory to quantum theory, the book needs to contain the following six topics, permutation group, SU(2) and SU(d), Heisenberg representation, squeezing operation, Discrete Heisenberg representation, and the relation with Fourier transform from a unified viewpoint by including projective representation. Unfortunately, although there are so many good mathematical books for a part of six topics, no book contains all of these topics because they are too segmentalized. Further, some of them are written in an abstract way in mathematical style and, often, the materials are too segmented. At least, the notation is not familiar to people working with quantum theory.Others are good elementary books, but do not deal with topics related to quantum theory. In particular, such elementary books do not cover projective representation, which is more important in quantum theory. On the other hand, there are several books for physicists. However, these books are too simple and lack the detailed discussion. Hence, they are not useful for advanced study even in physics. To resolve this issue, this book starts with the basic mathematics for quantum theory. Then, it introduces the basics of group representation and discusses the case of the finite groups, the symmetric group, e.g. Next, this book discusses Lie group and Lie algebra. This part starts with the basics knowledge, and proceeds to the special groups, e.g., SU(2), SU(1,1), and SU(d). After the special groups, it explains concrete applications to physical systems, e.g., angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, and quark model. Then, it proceeds to the general theory for Lie group and Lie algebra. Using this knowledge, this book explains the Bosonic system, which has the symmetries of Heisenberg group and the squeezing symmetry by SL(2,R) and Sp(2n,R). Finally, as the discrete version, this book treats the discrete Heisenberg representation which is related to quantum error correction. To enhance readers' undersnding, this book contains 54 figures, 23 tables, and 111 exercises with solutions.

Modular Representation Theory of Finite and P-Adic Groups

Автор: Gan Wee Teck, Tan Kai Meng
Название: Modular Representation Theory of Finite and P-Adic Groups
ISBN: 981465180X ISBN-13(EAN): 9789814651806
Издательство: World Scientific Publishing
Рейтинг:
Цена: 13939.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume is an outgrowth of the program Modular Representation Theory of Finite and p-Adic Groups held at the Institute for Mathematical Sciences at National University of Singapore during the period of 1-26 April 2013.

Representation Theory and Harmonic Analysis of Wreath Products of Finite Groups

Автор: Ceccherini-Silberstein
Название: Representation Theory and Harmonic Analysis of Wreath Products of Finite Groups
ISBN: 1107627850 ISBN-13(EAN): 9781107627857
Издательство: Cambridge Academ
Рейтинг:
Цена: 8395.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A self-contained treatment of the representation theory of wreath products of finite groups and harmonic analysis on the corresponding homogeneous spaces. The book functions as both a useful reference for researchers, and a graduate textbook with plenty of examples and several exercises.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия