Stochastic Integration in Banach Spaces, Vidyadhar Mandrekar; Barbara R?diger
Автор: Vidyadhar Mandrekar; Barbara R?diger Название: Stochastic Integration in Banach Spaces ISBN: 3319128523 ISBN-13(EAN): 9783319128528 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Considering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena.
Описание: Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book features fully-refereed, high-quality papers exploring new results and trends in weighted norm inequalities, Schur-Agler class functions, complex analysis, dynamical systems, and dyadic harmonic analysis.
Автор: Botelho, Fabio Название: Functional analysis and applied optimization in banach spaces ISBN: 3319382063 ISBN-13(EAN): 9783319382067 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one.
Автор: Xavier Fernique; Bernard Heinkel; Paul-Andre Meyer Название: Geometrical and Statistical Aspects of Probability in Banach Spaces ISBN: 3540164871 ISBN-13(EAN): 9783540164876 Издательство: Springer Рейтинг: Цена: 3492.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Jesus Bastero; Miguel San Miguel Название: Probability and Banach Spaces ISBN: 354017186X ISBN-13(EAN): 9783540171867 Издательство: Springer Рейтинг: Цена: 4884.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Vladimir Kadets Название: Series in Banach Spaces ISBN: 3034899424 ISBN-13(EAN): 9783034899420 Издательство: Springer Рейтинг: Цена: 18167.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The specific character of the theory of series manifests itself when one considers rearrangements (permutations) of the terms of a series, which brings combinatorial considerations into the problems studied.
Автор: Jorgen Hoffmann-Jorgensen; James Kuelbs; Michael B Название: Probability in Banach Spaces, 9 ISBN: 1461266823 ISBN-13(EAN): 9781461266822 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The papers contained in this volume are an indication of the topics th discussed and the interests of the participants of The 9 International Conference on Probability in Banach Spaces, held at Sandjberg, Denmark, August 16-21, 1993.
Автор: Tuomas Hyt?nen; Jan van Neerven; Mark Veraar; Lutz Название: Analysis in Banach Spaces ISBN: 3319698079 ISBN-13(EAN): 9783319698076 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This second volume of Analysis in Banach Spaces, Probabilistic Methods and Operator Theory, is the successor to Volume I, Martingales and Littlewood-Paley Theory.
Автор: Fabio Botelho Название: Functional Analysis and Applied Optimization in Banach Spaces ISBN: 3319060732 ISBN-13(EAN): 9783319060736 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one.
Автор: Angelo Favini; Enrico Obrecht Название: Differential Equations in Banach Spaces ISBN: 3540171916 ISBN-13(EAN): 9783540171911 Издательство: Springer Рейтинг: Цена: 4884.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: H.-H. Kuo Название: Gaussian Measures in Banach Spaces ISBN: 3540071733 ISBN-13(EAN): 9783540071730 Издательство: Springer Рейтинг: Цена: 6288.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Probability limit theorems in infinite-dimensional spaces give conditions un- der which convergence holds uniformly over an infinite class of sets or functions. Early results in this direction were the Glivenko-Cantelli, Kolmogorov-Smirnov and Donsker theorems for empirical distribution functions. Already in these cases there is convergence in Banach spaces that are not only infinite-dimensional but nonsep- arable. But the theory in such spaces developed slowly until the late 1970's. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950's and developed strongly in the 1960's and 70's. We have in mind here also work on sample continuity and boundedness of Gaussian processes and random methods in harmonic analysis. By the mid-70's a substantial theory was in place, including sharp infinite-dimensional limit theorems under either metric entropy or geometric conditions. Then, modern empirical process theory began to develop, where the collection of half-lines in the line has been replaced by much more general collections of sets in and functions on multidimensional spaces. Many of the main ideas from probability in separable Banach spaces turned out to have one or more useful analogues for empirical processes. Tightness became asymptotic equicontinuity. Metric entropy remained useful but also was adapted to metric entropy with bracketing, random entropies, and Kolchinskii-Pollard entropy. Even norms themselves were in some situations replaced by measurable majorants, to which the well-developed separable theory then carried over straightforwardly.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru