Автор: Sergei S. Molokov; R. Moreau; H. Keith Moffatt Название: Magnetohydrodynamics ISBN: 9048172055 ISBN-13(EAN): 9789048172054 Издательство: Springer Рейтинг: Цена: 22201.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book revises the evolution of ideas in various branches of magnetohydrodynamics (astrophysics, earth and solar dynamos, pinch, MHD turbulence and liquid metals) and reviews current trends and challenges.
Автор: Davidson Название: Introduction to Magnetohydrodynamics ISBN: 131661302X ISBN-13(EAN): 9781316613023 Издательство: Cambridge Academ Рейтинг: Цена: 8870.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A comprehensive textbook which prioritises physical ideas over mathematical detail. This new edition offers additional coverage of planetary dynamos, astrophysical applications and fusion plasma magnetohydrodynamics. An ideal companion for both undergraduates and postgraduates in physics, applied mathematics or engineering.
Автор: Roger J. Hosking; Robert L. Dewar Название: Fundamental Fluid Mechanics and Magnetohydrodynamics ISBN: 9812875999 ISBN-13(EAN): 9789812875990 Издательство: Springer Рейтинг: Цена: 10448.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is primarily intended to enable postgraduate research students to enhance their understanding and expertise in Fluid Mechanics and Magnetohydrodynamics (MHD), subjects no longer treated in isolation.
Автор: Roger J. Hosking; Robert L. Dewar Название: Fundamental Fluid Mechanics and Magnetohydrodynamics ISBN: 9811012911 ISBN-13(EAN): 9789811012914 Издательство: Springer Рейтинг: Цена: 9141.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is primarily intended to enable postgraduate research students to enhance their understanding and expertise in Fluid Mechanics and Magnetohydrodynamics (MHD), subjects no longer treated in isolation.
Описание: This monograph set presents a consistent and self-contained framework of stochastic dynamic systems with maximal possible completeness. This approach offers a possibility of both obtaining exact solutions to stochastic problems for a number of models of fluctuating parameters and constructing various asymptotic buildings.