Описание: From the reviews: "This book is concerned with the application of methods from dynamical systems and bifurcation theories to the study of nonlinear oscillations. Chapter 1 provides a review of basic results in the theory of dynamical systems, covering both ordinary differential equations and discrete mappings. Chapter 2 presents 4 examples from nonlinear oscillations. Chapter 3 contains a discussion of the methods of local bifurcation theory for flows and maps, including center manifolds and normal forms. Chapter 4 develops analytical methods of averaging and perturbation theory. Close analysis of geometrically defined two-dimensional maps with complicated invariant sets is discussed in chapter 5. Chapter 6 covers global homoclinic and heteroclinic bifurcations. The final chapter shows how the global bifurcations reappear in degenerate local bifurcations and ends with several more models of physical problems which display these behaviors." #Book Review - Engineering Societies Library, New York#1 "An attempt to make research tools concerning `strange attractors' developed in the last 20 years available to applied scientists and to make clear to research mathematicians the needs in applied works. Emphasis on geometric and topological solutions of differential equations. Applications mainly drawn from nonlinear oscillations." #American Mathematical Monthly#2
Описание: This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence.
Автор: Angelo B. Mingarelli; S. Gotskalk Halvorsen Название: Non-Oscillation Domains of Differential Equations with Two Parameters ISBN: 3540500782 ISBN-13(EAN): 9783540500780 Издательство: Springer Рейтинг: Цена: 3492.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Offers an introduction to single linear differential equations (systems) with two parameters and extensions to difference equations and Stieltjes integral equations. This book is suitable for graduate students and researchers.
Автор: Ravi P. Agarwal; Donal O`Regan; Samir H. Saker Название: Oscillation and Stability of Delay Models in Biology ISBN: 3319065564 ISBN-13(EAN): 9783319065564 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Researchers in the fields of mathematical modeling, mathematical biology, and population dynamics will be particularly interested in this material.
Описание: An overview of recent advances in the stability and oscillation of autonomous delay differential equations. Topics covered include linear and nonlinear delay and integrodifferential equations, which have potential applications in biological and physical dynamic processes.
Автор: Uri Elias Название: Oscillation Theory of Two-Term Differential Equations ISBN: 9048148065 ISBN-13(EAN): 9789048148066 Издательство: Springer Рейтинг: Цена: 19559.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The other restricts its area of interest to certain families of equations and studies in maximal details phenomena which characterize only those equations. Among them we find third and fourth order equations, self adjoint equations, etc.
Автор: Uri Elias Название: Oscillation Theory of Two-Term Differential Equations ISBN: 0792344472 ISBN-13(EAN): 9780792344476 Издательство: Springer Рейтинг: Цена: 13275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Deals with oscillation theory. This title considers the two-term linear differential equations Lny + p(x)y = 0, where Ln is a disconjugate operator of order n and p(x) has a fixed sign. It pays attention to the equation y(n) + p(x)y = 0.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru