Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Nonlinear Estimation and Classification, David D. Denison; Mark H. Hansen; Christopher C. H


Варианты приобретения
Цена: 12157.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: David D. Denison; Mark H. Hansen; Christopher C. H
Название:  Nonlinear Estimation and Classification
ISBN: 9780387954714
Издательство: Springer
Классификация:


ISBN-10: 0387954716
Обложка/Формат: Paperback
Страницы: 477
Вес: 0.68 кг.
Дата издания: 22.01.2003
Серия: Lecture Notes in Statistics
Язык: English
Размер: 236 x 161 x 23
Основная тема: Statistics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Driven by the complexity of these new problems, and fueled by the explosion of available computer power, highly adaptive, non-linear procedures are now essential components of modern data analysis, a term that we liberally interpret to include speech and pattern recognition, classification, data compression and signal processing.


Methods for estimation and inference in modern econometrics

Автор: Anatolyev, Stanislav Gospodinov, Nikolay
Название: Methods for estimation and inference in modern econometrics
ISBN: 1439838240 ISBN-13(EAN): 9781439838242
Издательство: Taylor&Francis
Рейтинг:
Цена: 15312.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Methods for Estimation and Inference in Modern Econometrics provides a comprehensive introduction to a wide range of emerging topics, such as generalized empirical likelihood estimation and alternative asymptotics under drifting parameterizations, which have not been discussed in detail outside of highly technical research papers. The book also addresses several problems often arising in the analysis of economic data, including weak identification, model misspecification, and possible nonstationarity. The book's appendix provides a review of some basic concepts and results from linear algebra, probability theory, and statistics that are used throughout the book.





Topics covered include:







  • Well-established nonparametric and parametric approaches to estimation and conventional (asymptotic and bootstrap) frameworks for statistical inference


  • Estimation of models based on moment restrictions implied by economic theory, including various method-of-moments estimators for unconditional and conditional moment restriction models, and asymptotic theory for correctly specified and misspecified models


  • Non-conventional asymptotic tools that lead to improved finite sample inference, such as higher-order asymptotic analysis that allows for more accurate approximations via various asymptotic expansions, and asymptotic approximations based on drifting parameter sequences






Offering a unified approach to studying econometric problems, Methods for Estimation and Inference in Modern Econometrics links most of the existing estimation and inference methods in a general framework to help readers synthesize all aspects of modern econometric theory. Various theoretical exercises and suggested solutions are included to facilitate understanding.

Bayesian Methods for Nonlinear Classification and Regression

Автор: David G. T. Denison
Название: Bayesian Methods for Nonlinear Classification and Regression
ISBN: 0471490369 ISBN-13(EAN): 9780471490364
Издательство: Wiley
Рейтинг:
Цена: 20584.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Regression analysis models the relationship between a set of responses and another variable: for example, to estimate the true position of a line through a number of observed points. Unfortunately, data rarely conforms to simple curves and straight lines - parametric models - and this text examines more complex - or nonparametric - models.

Algorithms of Estimation for Nonlinear Systems

Автор: Rafael Mart?nez-Guerra; Christopher Diego Cruz-Anc
Название: Algorithms of Estimation for Nonlinear Systems
ISBN: 3319530399 ISBN-13(EAN): 9783319530390
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Preface.- Analysis of input-affine nonlinear processes.- Basic Definitions of Differential Algebras.- Algebraic Observability Condition for Nonlinear systems and External behaviour.- Generalized Observability Canonical Forms.- Observer Synthesis.- Tracking and Stabilization Problems.- Parametric and State Estimation.- Observer synthesis for a more general class of Nonlinear Systems.- A Separation Principle for Nonlinear Systems.- Some uncommon observers with interesting applications.- Appendix A Singularity Treatment.- Appendix B Some properties for Nonlinear Systems.

Nonlinear Estimation

Автор: Gavin J.S. Ross
Название: Nonlinear Estimation
ISBN: 146128001X ISBN-13(EAN): 9781461280019
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book provides insights into why some models are difficult to fit, how to combine fits over different data sets, how to improve data collection to reduce prediction variance, and how to program particular models to handle a full range of data sets.

Conditional Moment Estimation of Nonlinear Equation Systems

Автор: Joachim Inkmann
Название: Conditional Moment Estimation of Nonlinear Equation Systems
ISBN: 3540412077 ISBN-13(EAN): 9783540412076
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Generalized method of moments (GMM) estimation of nonlinear systems has two important advantages over conventional maximum likelihood (ML) estimation: GMM estimation usually requires less restrictive distributional assumptions and remains computationally attractive when ML estimation becomes burdensome or even impossible.

Recursive Nonlinear Estimation

Автор: Rudolph Kulhavy
Название: Recursive Nonlinear Estimation
ISBN: 3540760636 ISBN-13(EAN): 9783540760634
Издательство: Springer
Рейтинг:
Цена: 14365.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In a close analogy to matching data in Euclidean space, this monograph views parameter estimation as matching of the empirical distribution of data with a model-based distribution. The book suggests a solution to the problem of recursive estimation of non-Gaussian and nonlinear models.

Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena

Автор: Wolfgang Desch; Franz Kappel; Karl Kunisch
Название: Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena
ISBN: 3034896662 ISBN-13(EAN): 9783034896665
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 22 papers on control of nonlinear partial differential equations highlight the area from a broad variety of viewpoints. A significant part of the volume is devoted to applications in engineering, continuum mechanics and population biology.

The Statistical Evaluation of Medical Tests for Classification and Prediction

Автор: Pepe, Margaret Sullivan
Название: The Statistical Evaluation of Medical Tests for Classification and Prediction
ISBN: 0198565828 ISBN-13(EAN): 9780198565826
Издательство: Oxford Academ
Рейтинг:
Цена: 14573.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book describes statistical techniques for the design and evaluation of research studies on medical diagnostic tests, screening tests, biomarkers and new technologies for classification and prediction in medicine.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия