Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Limit Theorems for the Riemann Zeta-Function, Antanas Laurincikas


Варианты приобретения
Цена: 15372.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Antanas Laurincikas
Название:  Limit Theorems for the Riemann Zeta-Function
ISBN: 9780792338246
Издательство: Springer
Классификация:
ISBN-10: 0792338243
Обложка/Формат: Hardcover
Страницы: 306
Вес: 0.63 кг.
Дата издания: 30.11.1995
Серия: Mathematics and Its Applications
Язык: English
Размер: 234 x 156 x 19
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This volume presents a range of results in analytic and probabilistic number theory. The full spectrum of limit theorems in the sense of weak convergence of probability measures for the modules of the Riemann zeta-function and other functions is given by Dirichlet series.


Prime Numbers and the Riemann Hypothesis

Автор: Mazur
Название: Prime Numbers and the Riemann Hypothesis
ISBN: 1107499437 ISBN-13(EAN): 9781107499430
Издательство: Cambridge Academ
Рейтинг:
Цена: 3802.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces prime numbers and explains the celebrated, unsolved Riemann hypothesis in a direct manner. Suitable for both scholars and those with a minimal mathematical background.

An Approach to the Selberg Trace Formula via the Selberg Zeta-Function

Автор: J?rgen Fischer
Название: An Approach to the Selberg Trace Formula via the Selberg Zeta-Function
ISBN: 3540152083 ISBN-13(EAN): 9783540152088
Издательство: Springer
Рейтинг:
Цена: 3487.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Finally the general Selberg trace formula is deduced easily from the properties of the Selberg zeta-function: this is similar to the procedure in analytic number theory where the explicit formulae are deduced from the properties of the Riemann zeta-function.

Bernoulli Numbers and Zeta Functions

Автор: Arakawa Tsuneo
Название: Bernoulli Numbers and Zeta Functions
ISBN: 4431549188 ISBN-13(EAN): 9784431549185
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. a formula for Bernoulli numbers by Stirling numbers; congruences between some class numbers and Bernoulli numbers;

Selberg`s Zeta-, L-, and Eisensteinseries

Автор: U. Christian
Название: Selberg`s Zeta-, L-, and Eisensteinseries
ISBN: 3540127011 ISBN-13(EAN): 9783540127017
Издательство: Springer
Рейтинг:
Цена: 3492.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Limit Theorems in Probability, Statistics and Number Theory

Автор: Peter Eichelsbacher; Guido Elsner; Holger K?sters;
Название: Limit Theorems in Probability, Statistics and Number Theory
ISBN: 3642433960 ISBN-13(EAN): 9783642433962
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

​Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory.

The book is the product of a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich G tze, a noted expert in this field.

The Bloch–Kato Conjecture for the Riemann Zeta Function

Автор: Coates
Название: The Bloch–Kato Conjecture for the Riemann Zeta Function
ISBN: 1107492963 ISBN-13(EAN): 9781107492967
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An account of a significant body of recent work that resolves some long-standing mysteries concerning special values of the Riemann zeta function. It brings together many important results from K-theory, motivic cohomology, and Iwasawa theory, accessible at graduate level and above.

Spectral Theory of the Riemann Zeta-Function

Автор: Motohashi
Название: Spectral Theory of the Riemann Zeta-Function
ISBN: 0521058074 ISBN-13(EAN): 9780521058070
Издательство: Cambridge Academ
Рейтинг:
Цена: 8554.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Professor Motohashi shows that the Riemann zeta function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the function itself.

Exploring the Riemann Zeta Function

Автор: Hugh Montgomery; Ashkan Nikeghbali; Michael Th. Ra
Название: Exploring the Riemann Zeta Function
ISBN: 3319599682 ISBN-13(EAN): 9783319599687
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects.

The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Cryptography, Mathematical Physics, and Engineering.

Limit Theorems in Probability, Statistics and Number Theory

Автор: Eichelsbacher Peter
Название: Limit Theorems in Probability, Statistics and Number Theory
ISBN: 364236067X ISBN-13(EAN): 9783642360671
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

​Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory.

The book is the product of a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich G tze, a noted expert in this field.

The Riemann Hypothesis for Function Fields

Автор: Frankenhuijsen
Название: The Riemann Hypothesis for Function Fields
ISBN: 1107047218 ISBN-13(EAN): 9781107047211
Издательство: Cambridge Academ
Рейтинг:
Цена: 16790.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A description of how non-commutative geometry could provide a means to attack the Riemann Hypothesis, one of the most important unsolved problems in mathematics. The book will be of interest to graduate students in analytic and algebraic number theory, and provides a strong foundation for further research in this area.

The Riemann Hypothesis for Function Fields

Автор: Frankenhuijsen
Название: The Riemann Hypothesis for Function Fields
ISBN: 1107685311 ISBN-13(EAN): 9781107685314
Издательство: Cambridge Academ
Рейтинг:
Цена: 6019.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A description of how non-commutative geometry could provide a means to attack the Riemann Hypothesis, one of the most important unsolved problems in mathematics. The book will be of interest to graduate students in analytic and algebraic number theory, and provides a strong foundation for further research in this area.

Riemann Surfaces and Algebraic Curves

Автор: Cavalieri
Название: Riemann Surfaces and Algebraic Curves
ISBN: 110714924X ISBN-13(EAN): 9781107149243
Издательство: Cambridge Academ
Рейтинг:
Цена: 17424.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field in algebraic geometry. Designed for undergraduate study, this classroom-tested text demonstrates the connections between diverse areas of mathematics and features short essays by guest writers as well as over 100 exercises for the reader.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия