Limit Theorems for the Riemann Zeta-Function, Antanas Laurincikas
Автор: Mazur Название: Prime Numbers and the Riemann Hypothesis ISBN: 1107499437 ISBN-13(EAN): 9781107499430 Издательство: Cambridge Academ Рейтинг: Цена: 3802.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book introduces prime numbers and explains the celebrated, unsolved Riemann hypothesis in a direct manner. Suitable for both scholars and those with a minimal mathematical background.
Описание: Finally the general Selberg trace formula is deduced easily from the properties of the Selberg zeta-function: this is similar to the procedure in analytic number theory where the explicit formulae are deduced from the properties of the Riemann zeta-function.
Автор: Arakawa Tsuneo Название: Bernoulli Numbers and Zeta Functions ISBN: 4431549188 ISBN-13(EAN): 9784431549185 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. a formula for Bernoulli numbers by Stirling numbers; congruences between some class numbers and Bernoulli numbers;
Автор: U. Christian Название: Selberg`s Zeta-, L-, and Eisensteinseries ISBN: 3540127011 ISBN-13(EAN): 9783540127017 Издательство: Springer Рейтинг: Цена: 3492.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Peter Eichelsbacher; Guido Elsner; Holger K?sters; Название: Limit Theorems in Probability, Statistics and Number Theory ISBN: 3642433960 ISBN-13(EAN): 9783642433962 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory.
The book is the product of a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich G tze, a noted expert in this field.
Автор: Coates Название: The Bloch–Kato Conjecture for the Riemann Zeta Function ISBN: 1107492963 ISBN-13(EAN): 9781107492967 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An account of a significant body of recent work that resolves some long-standing mysteries concerning special values of the Riemann zeta function. It brings together many important results from K-theory, motivic cohomology, and Iwasawa theory, accessible at graduate level and above.
Автор: Motohashi Название: Spectral Theory of the Riemann Zeta-Function ISBN: 0521058074 ISBN-13(EAN): 9780521058070 Издательство: Cambridge Academ Рейтинг: Цена: 8554.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Professor Motohashi shows that the Riemann zeta function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the function itself.
Автор: Hugh Montgomery; Ashkan Nikeghbali; Michael Th. Ra Название: Exploring the Riemann Zeta Function ISBN: 3319599682 ISBN-13(EAN): 9783319599687 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects.
The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Cryptography, Mathematical Physics, and Engineering.
Автор: Eichelsbacher Peter Название: Limit Theorems in Probability, Statistics and Number Theory ISBN: 364236067X ISBN-13(EAN): 9783642360671 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory.
The book is the product of a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich G tze, a noted expert in this field.
Автор: Frankenhuijsen Название: The Riemann Hypothesis for Function Fields ISBN: 1107047218 ISBN-13(EAN): 9781107047211 Издательство: Cambridge Academ Рейтинг: Цена: 16790.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A description of how non-commutative geometry could provide a means to attack the Riemann Hypothesis, one of the most important unsolved problems in mathematics. The book will be of interest to graduate students in analytic and algebraic number theory, and provides a strong foundation for further research in this area.
Автор: Frankenhuijsen Название: The Riemann Hypothesis for Function Fields ISBN: 1107685311 ISBN-13(EAN): 9781107685314 Издательство: Cambridge Academ Рейтинг: Цена: 6019.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A description of how non-commutative geometry could provide a means to attack the Riemann Hypothesis, one of the most important unsolved problems in mathematics. The book will be of interest to graduate students in analytic and algebraic number theory, and provides a strong foundation for further research in this area.
Автор: Cavalieri Название: Riemann Surfaces and Algebraic Curves ISBN: 110714924X ISBN-13(EAN): 9781107149243 Издательство: Cambridge Academ Рейтинг: Цена: 17424.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field in algebraic geometry. Designed for undergraduate study, this classroom-tested text demonstrates the connections between diverse areas of mathematics and features short essays by guest writers as well as over 100 exercises for the reader.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru