The Geometry of Hamilton and Lagrange Spaces, R. Miron; Dragos Hrimiuc; Hideo Shimada; Sorin V.
Автор: P.L. Antonelli; R. Miron Название: Lagrange and Finsler Geometry ISBN: 0792338731 ISBN-13(EAN): 9780792338734 Издательство: Springer Рейтинг: Цена: 23053.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The differential geometry of a regular Lagrangian is more involved than that of classical kinetic energy and consequently is far from being Riemannian. This collection of papers covers higher order Lagrange geometry, the theory of -Lagrange manifolds, electromagnetic theory and neurophysiology.
Автор: Vladimir Fock; Andrey Marshakov; Florent Schaffhau Название: Geometry and Quantization of Moduli Spaces ISBN: 3319335774 ISBN-13(EAN): 9783319335773 Издательство: Springer Рейтинг: Цена: 4191.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: It presents both background information and recent developments on selected topics that are experiencing extraordinary growth within the broad research area of geometry and quantization of moduli spaces.
Автор: R. Miron Название: The Geometry of Higher-Order Lagrange Spaces ISBN: 079234393X ISBN-13(EAN): 9780792343936 Издательство: Springer Рейтинг: Цена: 30327.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Devoted to the problem of the geometrizing of Lagrangians which depend on higher-order accelerations, this volume presents a construction of the geometry of the total space of the bundle of the accelerations of order k>=1. It is suitable for scientists whose work involves differential geometry and mechanics of particles and systems.
Автор: Alexander M. Rubinov; Xiao-qi Yang Название: Lagrange-type Functions in Constrained Non-Convex Optimization ISBN: 1461348218 ISBN-13(EAN): 9781461348214 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Thus the question arises how to generalize classical Lagrange and penalty functions, in order to obtain an appropriate scheme for reducing constrained optimiza- tion problems to unconstrained ones that will be suitable for sufficiently broad classes of optimization problems from both the theoretical and computational viewpoints.
Автор: R. Miron Название: The Geometry of Higher-Order Hamilton Spaces ISBN: 940103995X ISBN-13(EAN): 9789401039956 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Asisknown, theLagrangeandHamiltongeometrieshaveappearedrelatively recently 76, 86]. Since 1980thesegeometrieshave beenintensivelystudied bymathematiciansandphysicistsfromRomania, Canada, Germany, Japan, Russia, Hungary, e.S.A. etc. PrestigiousscientificmeetingsdevotedtoLagrangeandHamiltongeome- tries and their applications have been organized in the above mentioned countries and a number ofbooks and monographs have been published by specialists in the field: R. Miron 94, 95], R. Mironand M. Anastasiei 99, 100], R. Miron, D. Hrimiuc, H. Shimadaand S.Sabau 115], P.L. Antonelli, R. Ingardenand M.Matsumoto 7]. Finslerspaces, whichformasubclassof theclassofLagrangespaces, havebeenthesubjectofsomeexcellentbooks, forexampleby: Yl.Matsumoto 76], M.AbateandG.Patrizio 1], D.Bao, S.S. Chernand Z.Shen 17]andA.BejancuandH.R.Farran 20]. Also, wewould liketopointoutthemonographsofM. Crampin 34], O.Krupkova 72] and D.Opri, I.Butulescu 125], D.Saunders 144], whichcontainpertinentappli- cationsinanalyticalmechanicsandinthetheoryofpartialdifferentialequa- tions. Applicationsinmechanics, cosmology, theoreticalphysicsandbiology can be found in the well known books ofP.L. Antonelliand T.Zawstaniak 11], G.S. Asanov 14]' S. Ikeda 59]: VI. de LeoneandP.Rodrigues 73]. TheimportanceofLagrangeandHamiltongeometriesconsistsofthefact that variational problems for important Lagrangiansor Hamiltonians have numerous applicationsinvariousfields, such asmathematics, thetheoryof dynamicalsystems, optimalcontrol, biology, andeconomy. Inthisrespect, P.L. Antonelli'sremark isinteresting: "ThereisnowstrongevidencethatthesymplecticgeometryofHamilto- niandynamicalsystemsisdeeplyconnectedtoCartangeometry, thedualof Finslergeometry," (seeV.I.Arnold, I.M.GelfandandV.S.Retach 13]). The above mentioned applications have also imposed the introduction x RaduMiron ofthe notionsofhigherorder Lagrangespacesand, ofcourse, higherorder Hamilton spaces. The base manifolds ofthese spaces are bundles ofaccel- erations ofsuperior order. The methods used in the construction ofthese geometries are the natural extensions ofthe classical methods used in the edification ofLagrange and Hamilton geometries. These methods allow us to solvean old problemofdifferentialgeometryformulated by Bianchiand Bompiani 94]morethan 100yearsago, namelytheproblemofprolongation ofaRiemannianstructure gdefinedonthebasemanifoldM, tothetangent k bundleT M, k> 1. Bymeansofthissolutionofthe previousproblem, we canconstruct, for thefirst time, goodexamplesofregularLagrangiansand Hamiltoniansofhigherorder.
Автор: L. Schwartz; P.R. Chernoff Название: Geometry and Probability in Banach Spaces ISBN: 354010691X ISBN-13(EAN): 9783540106913 Издательство: Springer Рейтинг: Цена: 3487.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: R. Miron Название: The Geometry of Higher-Order Lagrange Spaces ISBN: 9048147891 ISBN-13(EAN): 9789048147892 Издательство: Springer Рейтинг: Цена: 30327.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph is mostly devoted to the problem of the geome- trizing of Lagrangians which depend on higher order accelerations. It naturally prolongs the theme of the monograph "The Geometry of La- grange spaces: Theory and Applications," written together with M. Anastasiei and published by Kluwer Academic Publishers in 1994. The existence of Lagrangians of order k > 1 has been contemplated by mechanicists and physicists for a long time. Einstein had grasped their presence in connection with the Brownian motion. They are also present in relativistic theories based on metrics which depend on speeds and accelerations of particles or in the Hamiltonian formulation of non- linear systems given by Korteweg-de Vries equations. There resulted from here the methods to be adopted in their theoretical treatment. One is based on the variational problem involving the integral action of the Lagrangian. A second one is derived from the axioms of Analytical Mechanics involving the Poincare-Cartan forms. The geometrical methods based on the study of the geometries of higher order could invigorate the whole theory. This is the way adopted by us in defining and studying the Lagrange spaces of higher order. The problems raised by the geometrization of Lagrangians of order k > 1 investigated by many scholars: Ch. Ehresmann, P. Libermann, J. Pommaret; J.T. Synge, M. Crampin, P. Saunders; G.S. Asanov, P.Aringazin; I. Kolar, D. Krupka; M. de Leon, W. Sarlet, P. Cantrjin, H. Rund, W.M. Tulczyjew, A. Kawaguchi, K. Yano, K. Kondo, D.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru