Название: Recent advances in reinforcement learning ISBN: 0792397053 ISBN-13(EAN): 9780792397052 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Addresses research in the Artificial Intelligence and Neural Network communities. This book includes topics such as the theoretical foundations of dynamic programming approaches, the role of prior knowledge, and methods for improving performance of reinforcement-learning techniques.
Автор: Sugiyama Название: Statistical Reinforcement Learning ISBN: 1439856893 ISBN-13(EAN): 9781439856895 Издательство: Taylor&Francis Рейтинг: Цена: 13014.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for decision making in unknown environments with large amounts of data.
Supplying an up-to-date and accessible introduction to the field, Statistical Reinforcement Learning: Modern Machine Learning Approaches presents fundamental concepts and practical algorithms of statistical reinforcement learning from the modern machine learning viewpoint. It covers various types of RL approaches, including model-based and model-free approaches, policy iteration, and policy search methods.
Covers the range of reinforcement learning algorithms from a modern perspective
Lays out the associated optimization problems for each reinforcement learning scenario covered
Provides thought-provoking statistical treatment of reinforcement learning algorithms
The book covers approaches recently introduced in the data mining and machine learning fields to provide a systematic bridge between RL and data mining/machine learning researchers. It presents state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. Numerous illustrative examples are included to help readers understand the intuition and usefulness of reinforcement learning techniques.
This book is an ideal resource for graduate-level students in computer science and applied statistics programs, as well as researchers and engineers in related fields.
Автор: Sutton, Richard S. Barto, Andrew G. Название: Reinforcement learning ISBN: 0262193981 ISBN-13(EAN): 9780262193986 Издательство: MIT Press Рейтинг: Цена: 10040.00 р. Наличие на складе: Нет в наличии.
Описание: An account of key ideas and algorithms in reinforcement learning. The discussion ranges from the history of the field`s intellectual foundations to recent developments and applications. Areas studied include reinforcement learning problems in terms of Markov decision problems and solution methods.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru