Symposium on Non-Well-Posed Problems and Logarithmic Convexity, Knops Robin J.
Автор: Assen L. Dontchev; Tullio Zolezzi Название: Well-Posed Optimization Problems ISBN: 3540567372 ISBN-13(EAN): 9783540567370 Издательство: Springer Рейтинг: Цена: 6282.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents in a unified way the mathematical theory of well-posedness in optimization. The book is addressed to mathematicians interested in optimization and related topics, and also to engineers, control theorists, economists and applied scientists who can find here a mathematical justification of practical procedures they encounter.
Автор: Roberto Lucchetti Название: Convexity and Well-Posed Problems ISBN: 1441921117 ISBN-13(EAN): 9781441921116 Издательство: Springer Рейтинг: Цена: 9357.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: We shall consider convex functions from the most modern point of view: a function is de?ned to be convex whenever its epigraph, the set of the points lying above the graph, is a convex set. Except for trivial cases, the minimum value must be taken at a point where the function is not +?, hence at a point in the constraint set.
Автор: Edward B. Saff; Vilmos Totik Название: Logarithmic Potentials with External Fields ISBN: 3642081738 ISBN-13(EAN): 9783642081736 Издательство: Springer Рейтинг: Цена: 13275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In recent years approximation theory and the theory of orthogonal polynomials have witnessed a dramatic increase in the number of solutions of difficult and previously untouchable problems.
Автор: Nielsen Mikkel Slot, Rohde Victor Ulrich Название: Undergraduate Convexity: Problems and Solutions ISBN: 9813143649 ISBN-13(EAN): 9789813143647 Издательство: World Scientific Publishing Цена: 5069.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This solutions manual thoroughly goes through the exercises found in Undergraduate Convexity: From Fourier and Motzkin to Kuhn and Tucker. Several solutions are accompanied by detailed illustrations and intuitive explanations. This book will pave the way for students to easily grasp the multitude of solution methods and aspects of convex sets and convex functions. Companion Textbook here
Автор: Nielsen Mikkel Slot, Rohde Victor Ulrich Название: Undergraduate Convexity: Problems and Solutions ISBN: 9813146214 ISBN-13(EAN): 9789813146211 Издательство: World Scientific Publishing Цена: 8870.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This solutions manual thoroughly goes through the exercises found in Undergraduate Convexity: From Fourier and Motzkin to Kuhn and Tucker. Several solutions are accompanied by detailed illustrations and intuitive explanations. This book will pave the way for students to easily grasp the multitude of solution methods and aspects of convex sets and convex functions. Companion Textbook here
Автор: Roberto Lucchetti; Julian Revalski Название: Recent Developments in Well-Posed Variational Problems ISBN: 0792335767 ISBN-13(EAN): 9780792335764 Издательство: Springer Рейтинг: Цена: 13275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The increasing complexity of mathematical models, and the related need to introduce simplifying assumptions and numerical approximations, has led to the need to consider approximate solutions. This book is intended for researchers and graduate students studying variational problems, nonlinear analysis, optimization, and game theory.
Автор: Alexander M. Rubinov Название: Abstract Convexity and Global Optimization ISBN: 079236323X ISBN-13(EAN): 9780792363231 Издательство: Springer Рейтинг: Цена: 32004.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Consisting of two parts, this work presents the main notions of abstract convexity and their applications in the study of some classes of functions and sets. It examines both theoretical and numerical aspects of global optimization based on abstract convexity. It is of interest to specialists in global optimization, and mathematical programming.
Автор: Karim Adiprasito; Imre B?r?ny; Costin Vilcu Название: Convexity and Discrete Geometry Including Graph Theory ISBN: 3319281844 ISBN-13(EAN): 9783319281841 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7-11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary.
Автор: Alberto Cambini; Laura Martein Название: Generalized Convexity and Optimization ISBN: 3540708758 ISBN-13(EAN): 9783540708759 Издательство: Springer Рейтинг: Цена: 14673.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Offers a review of convex analysis and the fundamental theoretical findings on generalized convexity and on optimization, including their applications. This work includes a chapter devoted to generalized monotonicity and its relationship to generalized convexity and with the characterizations of important classes of fractional programming.
Автор: Jean-Pierre Crouzeix; Juan Enrique Martinez Legaz; Название: Generalized Convexity, Generalized Monotonicity: Recent Results ISBN: 1461333431 ISBN-13(EAN): 9781461333432 Издательство: Springer Рейтинг: Цена: 37594.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Roberto Lucchetti; Julian Revalski Название: Recent Developments in Well-Posed Variational Problems ISBN: 9048145783 ISBN-13(EAN): 9789048145782 Издательство: Springer Рейтинг: Цена: 23053.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume contains several surveys focused on the ideas of approximate solutions, well-posedness and stability of problems in scalar and vector optimization, game theory and calculus of variations. These concepts are of particular interest in many fields of mathematics. The idea of stability goes back at least to J. Hadamard who introduced it in the setting of differential equations; the concept of well-posedness for minimum problems is more recent (the mid-sixties) and originates with A.N. Tykhonov. It turns out that there are connections between the two properties in the sense that a well-posed problem which, at least in principle, is "easy to solve", has a solution set that does not vary too much under perturbation of the data of the problem, i.e. it is "stable". These themes have been studied in depth for minimum problems and now we have a general picture of the related phenomena in this case. But, of course, the same concepts can be studied in other more complicated situations as, e.g. vector optimization, game theory and variational inequalities. Let us mention that in several of these new areas there is not even a unique idea of what should be called approximate solution, and the latter is at the basis of the definition of well- posed problem.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru