Описание: Deals with the theory of pairs of compact convex sets. This book also talks about the problem of finding different types of minimal representants of a pair of nonempty compact convex subsets of a locally convex vector space in the sense of the Radstrom-Hormander Theory.
Автор: Mark R. Sepanski Название: Compact Lie Groups ISBN: 1441921389 ISBN-13(EAN): 9781441921383 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Included is the construction of the Spin groups, Schur Orthogonality, the Peter-Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel-Weil Theorem. The necessary Lie algebra theory is also developed in the text with a streamlined approach focusing on linear Lie groups.
Key Features are: - Provides an approach that minimizes advanced prerequisites; - Self-contained and systematic exposition requiring no previous exposure to Lie theory; -Advances quickly to the Peter-Weyl Theorem and its corresponding Fourier theory; - Streamlined Lie algebra discussion reduces the differential geometry prerequisite and allows a more rapid transition to the classification and construction of representations - Exercises sprinkled throughout.
This beginning graduate level text, aimed primarily at Lie Groups courses and related topics, assumes familiarity with elementary concepts from group theory, analysis, and manifold theory. Students, research mathematicians, and physicists interested in Lie theory will find this text very useful.
Автор: Giuseppe Sala Название: Geometric properties of non-compact CR manifolds ISBN: 8876423486 ISBN-13(EAN): 9788876423482 Издательство: Springer Рейтинг: Цена: 2516.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book deals with some questions related to the boundary problem in complex geometry and CR geometry. It discusses the structure properties of non-compact Levi-flat submanifolds of Cn.
Автор: Vasile Brinzanescu Название: Holomorphic Vector Bundles over Compact Complex Surfaces ISBN: 3540610189 ISBN-13(EAN): 9783540610182 Издательство: Springer Рейтинг: Цена: 4890.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This text discusses the existence problem and the classification problem for holomorphic structures in a given topological vector bundle over a compact complex surface. It also considers irreducible vector bundles and stability with respect to a Gauduchon metric.
Автор: Jean Gallier; Dianna Xu Название: A Guide to the Classification Theorem for Compact Surfaces ISBN: 3642437109 ISBN-13(EAN): 9783642437106 Издательство: Springer Рейтинг: Цена: 5583.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book offers a detailed proof of the classification theorem for compact surfaces. It presents the technical tools needed to deploy the method effectively as well as demonstrates their use in a clearly structured, worked example.
Автор: W. Barth; K. Hulek; Chris Peters; A.van de Ven Название: Compact Complex Surfaces ISBN: 3642577385 ISBN-13(EAN): 9783642577383 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In the 19 years which passed since the first edition was published, several important developments have taken place in the theory of surfaces.
Автор: Gallier Jean Название: Guide to the Classification Theorem for Compact Surfaces ISBN: 3642343635 ISBN-13(EAN): 9783642343636 Издательство: Springer Рейтинг: Цена: 7685.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book offers a detailed proof of the classification theorem for compact surfaces. It presents the technical tools needed to deploy the method effectively as well as demonstrates their use in a clearly structured, worked example.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru