Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Analytic Arithmetic in Algebraic Number Fields, Baruch Z. Moroz


Варианты приобретения
Цена: 3487.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Baruch Z. Moroz
Название:  Analytic Arithmetic in Algebraic Number Fields
ISBN: 9783540167846
Издательство: Springer
Классификация:
ISBN-10: 3540167846
Обложка/Формат: Paperback
Страницы: 180
Вес: 0.28 кг.
Дата издания: 01.08.1986
Серия: Lecture Notes in Mathematics
Язык: English
Размер: 234 x 156 x 10
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии


The Theory of Algebraic Number Fields

Автор: David Hilbert; F. Lemmermeyer; I.T. Adamson; N. Sc
Название: The Theory of Algebraic Number Fields
ISBN: 3642083064 ISBN-13(EAN): 9783642083068
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constance Reid, in Chapter VII of her book Hilbert, tells the story of the writing of the Zahlbericht, as his report entitled Die Theorie der algebra is- chen Zahlkorper has always been known. At its annual meeting in 1893 the Deutsche Mathematiker-Vereinigung (the German Mathematical Society) invited Hilbert and Minkowski to prepare a report on the current state of affairs in the theory of numbers, to be completed in two years. The two mathematicians agreed that Minkowski should write about rational number theory and Hilbert about algebraic number theory. Although Hilbert had almost completed his share of the report by the beginning of 1896 Minkowski had made much less progress and it was agreed that he should withdraw from his part of the project. Shortly afterwards Hilbert finished writing his report on algebraic number fields and the manuscript, carefully copied by his wife, was sent to the printers. The proofs were read by Minkowski, aided in part by Hurwitz, slowly and carefully, with close attention to the mathematical exposition as well as to the type-setting; at Minkowski's insistence Hilbert included a note of thanks to his wife. As Constance Reid writes, "The report on algebraic number fields exceeded in every way the expectation of the members of the Mathemati- cal Society. They had asked for a summary of the current state of affairs in the theory. They received a masterpiece, which simply and clearly fitted all the difficult developments of recent times into an elegantly integrated theory.

Diophantine Equations and Inequalities in Algebraic Number Fields

Автор: Yuan Wang
Название: Diophantine Equations and Inequalities in Algebraic Number Fields
ISBN: 3642634893 ISBN-13(EAN): 9783642634895
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The circle method has its genesis in a paper of Hardy and Ramanujan (see Hardy 1])in 1918concernedwiththepartitionfunction andtheproblemofrep- resenting numbers as sums ofsquares. Later, in a series of papers beginning in 1920entitled "some problems of'partitio numerorum''', Hardy and Littlewood (see Hardy 1]) created and developed systematically a new analytic method, the circle method in additive number theory. The most famous problems in ad- ditive number theory, namely Waring's problem and Goldbach's problem, are treated in their papers. The circle method is also called the Hardy-Littlewood method. Waring's problem may be described as follows: For every integer k 2 2, there is a number s= s( k) such that every positive integer N is representable as (1) where Xi arenon-negative integers. This assertion wasfirst proved by Hilbert 1] in 1909. Using their powerful circle method, Hardy and Littlewood obtained a deeper result on Waring's problem. They established an asymptotic formula for rs(N), the number of representations of N in the form (1), namely k 1 provided that 8 2 (k - 2)2 - +5. Here

Algebraic Geometry and Arithmetic Curves

Автор: Liu, Qing
Название: Algebraic Geometry and Arithmetic Curves
ISBN: 0199202494 ISBN-13(EAN): 9780199202492
Издательство: Oxford Academ
Рейтинг:
Цена: 12038.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This new-in-paperback edition provides an introduction to algebraic and arithmetic geometry, starting with the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. Clear explanations of both theory and applications, and almost 600 exercises are included in the text.

Arithmetic of Higher-Dimensional Algebraic Varieties

Автор: Bjorn Poonen; Yuri Tschinkel
Название: Arithmetic of Higher-Dimensional Algebraic Varieties
ISBN: 1461264715 ISBN-13(EAN): 9781461264712
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties.

Arithmetic Geometry over Global Function Fields

Автор: Gebhard B?ckle; David Burns; David Goss; Dinesh Th
Название: Arithmetic Geometry over Global Function Fields
ISBN: 3034808526 ISBN-13(EAN): 9783034808521
Издательство: Springer
Рейтинг:
Цена: 5589.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Arithmetic Geometry over Global Function Fields

Algebraic Number Theory

Автор: Neukirch
Название: Algebraic Number Theory
ISBN: 3540653996 ISBN-13(EAN): 9783540653998
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Aims to provide an introduction to algebraic number theory, which is largely based on the conception of (one-dimensional) arithmetic algebraic geometry. This book discusses the classical concepts from the viewpoint of Arakelov theory. It concludes with a chapter on zeta-functions and L-series.

Algebraic Number Theory and Fermat`s Last Theorem, Fourth Edition

Автор: Stewart
Название: Algebraic Number Theory and Fermat`s Last Theorem, Fourth Edition
ISBN: 1498738397 ISBN-13(EAN): 9781498738392
Издательство: Taylor&Francis
Рейтинг:
Цена: 13014.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Updated to reflect current research, Algebraic Number Theory and Fermat's Last Theorem, Fourth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics--the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers from a relatively concrete point of view. Students will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work.

New to the Fourth Edition

  • Provides up-to-date information on unique prime factorization for real quadratic number fields, especially Harper's proof that Z(√14) is Euclidean
  • Presents an important new result: Mihăilescu's proof of the Catalan conjecture of 1844
  • Revises and expands one chapter into two, covering classical ideas about modular functions and highlighting the new ideas of Frey, Wiles, and others that led to the long-sought proof of Fermat's Last Theorem
  • Improves and updates the index, figures, bibliography, further reading list, and historical remarks

Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.

Computational Algebraic Number Theory

Автор: M.E. Pohst
Название: Computational Algebraic Number Theory
ISBN: 3764329130 ISBN-13(EAN): 9783764329136
Издательство: Springer
Рейтинг:
Цена: 4186.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Computational algebraic number theory has been attracting broad interest in the last few years due to its potential applications in coding theory and cryptography. This book emphasizes practical algorithms for the computation of integral bases, the unit group and the class group of arbitrary algebraic number fields.

A Course in Computational Algebraic Number Theory

Автор: Henri Cohen
Название: A Course in Computational Algebraic Number Theory
ISBN: 3642081428 ISBN-13(EAN): 9783642081422
Издательство: Springer
Рейтинг:
Цена: 9077.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With the advent of powerful computing tools and numerous advances in math- ematics, computer science and cryptography, algorithmic number theory has become an important subject in its own right. Both external and internal pressures gave a powerful impetus to the development of more powerful al- gorithms. These in turn led to a large number of spectacular breakthroughs. To mention but a few, the LLL algorithm which has a wide range of appli- cations, including real world applications to integer programming, primality testing and factoring algorithms, sub-exponential class group and regulator algorithms, etc ... Several books exist which treat parts of this subject. (It is essentially impossible for an author to keep up with the rapid pace of progress in all areas of this subject.) Each book emphasizes a different area, corresponding to the author's tastes and interests. The most famous, but unfortunately the oldest, is Knuth's Art of Computer Programming, especially Chapter 4. The present book has two goals. First, to give a reasonably comprehensive introductory course in computational number theory. In particular, although we study some subjects in great detail, others are only mentioned, but with suitable pointers to the literature. Hence, we hope that this book can serve as a first course on the subject. A natural sequel would be to study more specialized subjects in the existing literature.

Contributions in Analytic and Algebraic Number Theory

Автор: Valentin Blomer; Preda Mih?ilescu
Название: Contributions in Analytic and Algebraic Number Theory
ISBN: 1489991581 ISBN-13(EAN): 9781489991584
Издательство: Springer
Рейтинг:
Цена: 25853.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The text that comprises this volume is a collection of surveys and original works from experts in the fields of algebraic number theory, analytic number theory, harmonic analysis, and hyperbolic geometry.

Problems in Algebraic Number Theory

Автор: Murty M. Ram
Название: Problems in Algebraic Number Theory
ISBN: 1441919678 ISBN-13(EAN): 9781441919670
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved

Algebraic Geometry and Number Theory

Автор: Hussein Mourtada; Celal Cem Sar?o?lu; Christophe S
Название: Algebraic Geometry and Number Theory
ISBN: 3319477781 ISBN-13(EAN): 9783319477787
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This lecture notes volume presents significant contributions from the "Algebraic Geometry and Number Theory" Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014.It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия