Описание: This volume is intended for advanced undergraduate or first-year graduate students as an introduction to applied nonlinear dynamics and chaos. The author has placed emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about the behavior of these systems. He has included the basic core material that is necessary for higher levels of study and research. Thus, people who do not necessarily have an extensive mathematical background, such as students in engineering, physics, chemistry, and biology, will find this text as useful as students of mathematics. This new edition contains extensive new material on invariant manifold theory and normal forms (in particular, Hamiltonian normal forms and the role of symmetry). Lagrangian, Hamiltonian, gradient, and reversible dynamical systems are also discussed. Elementary Hamiltonian bifurcations are covered, as well as the basic properties of circle maps. The book contains an extensive bibliography as well as a detailed glossary of terms, making it a comprehensive book on applied nonlinear dynamical systems from a geometrical and analytical point of view.
Описание: The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.
Описание: From the reviews: "This book is concerned with the application of methods from dynamical systems and bifurcation theories to the study of nonlinear oscillations. Chapter 1 provides a review of basic results in the theory of dynamical systems, covering both ordinary differential equations and discrete mappings. Chapter 2 presents 4 examples from nonlinear oscillations. Chapter 3 contains a discussion of the methods of local bifurcation theory for flows and maps, including center manifolds and normal forms. Chapter 4 develops analytical methods of averaging and perturbation theory. Close analysis of geometrically defined two-dimensional maps with complicated invariant sets is discussed in chapter 5. Chapter 6 covers global homoclinic and heteroclinic bifurcations. The final chapter shows how the global bifurcations reappear in degenerate local bifurcations and ends with several more models of physical problems which display these behaviors." #Book Review - Engineering Societies Library, New York#1 "An attempt to make research tools concerning `strange attractors' developed in the last 20 years available to applied scientists and to make clear to research mathematicians the needs in applied works. Emphasis on geometric and topological solutions of differential equations. Applications mainly drawn from nonlinear oscillations." #American Mathematical Monthly#2
Автор: Sanders J. A., Verhulst F., Murdock J. Название: Averaging Methods in Nonlinear Dynamical Systems ISBN: 0387489169 ISBN-13(EAN): 9780387489162 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Perturbation theory and in particular normal form theory has shown strong growth during the last decades. So it is not surprising that the authors have presented an extensive revision of the first edition of the Averaging Methods in Nonlinear Dynamical Systems book. There are many changes, corrections and updates in chapters on Basic Material and Asymptotics, Averaging, and Attraction. Chapters on Periodic Averaging and Hyperbolicity, Classical (first level) Normal Form Theory, Nilpotent (classical) Normal Form, and Higher Level Normal Form Theory are entirely new and represent new insights in averaging, in particular its relation with dynamical systems and the theory of normal forms. Also new are surveys on invariant manifolds in Appendix C and averaging for PDEs in Appendix E. Since the first edition, the book has expanded in length and the third author, James Murdock has been added.Review of First Edition"One of the most striking features of the book is the nice collection of examples, which range from the very simple to some that are elaborate, realistic, and of considerable practical importance. Most of them are presented in careful detail and are illustrated with profuse, illuminating diagrams." - Mathematical Reviews
Автор: V.I. Arnol`d; A.T. Fomenko; A.G. Reyman; S.P. Novi Название: Dynamical Systems VII ISBN: 3642057381 ISBN-13(EAN): 9783642057380 Издательство: Springer Рейтинг: Цена: 23058.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.
Автор: H.-O. Peitgen Название: Newton`s Method and Dynamical Systems ISBN: 0792301137 ISBN-13(EAN): 9780792301134 Издательство: Springer Рейтинг: Цена: 26546.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Stephen Wiggins Название: Chaotic Transport in Dynamical Systems ISBN: 0387975225 ISBN-13(EAN): 9780387975221 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Illustrating phase space transport problems arising in a variety of applications that can be modeled as time-periodic perturbations of planar Hamiltonian systems, the book begins with the study of transport in the associated two-dimensional Poincare Map.
Автор: Richard A. Holmgren Название: A First Course in Discrete Dynamical Systems ISBN: 0387947809 ISBN-13(EAN): 9780387947808 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Given the ease with which computers can do iteration it is possible for almost anyone to generate beautiful images whose roots lie in discrete dynamical systems. Images of Mandelbrot and Julia sets abound in publications both mathematical and not. This title provides subject which include the mathematics behind the pictures.
Автор: D. A. Rand; L.-S. Young Название: Dynamical Systems and Turbulence, Warwick 1980 ISBN: 3540111719 ISBN-13(EAN): 9783540111719 Издательство: Springer Рейтинг: Цена: 5583.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Michel Coornaert Название: Topological Dimension and Dynamical Systems ISBN: 3319197932 ISBN-13(EAN): 9783319197937 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Translated from the popular French edition, the goal of the book is to provide a self-contained introduction to mean topological dimension, an invariant of dynamical systems introduced in 1999 by Misha Gromov.
Автор: S.-N. Chow; J. W. Macki; Pietro Zecca; Roberto Con Название: Dynamical Systems ISBN: 3540407863 ISBN-13(EAN): 9783540407867 Издательство: Springer Рейтинг: Цена: 7959.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The C.I.M.E. session on Dynamical Systems, held in Cetraro (Italy), June 19-26, 2000, focused on the latest developments in several important areas in dynamical systems, with full development and historical context.
Автор: Hendrik W. Broer; George B. Huitema; Mikhail B. Se Название: Quasi-Periodic Motions in Families of Dynamical Systems ISBN: 3540620257 ISBN-13(EAN): 9783540620259 Издательство: Springer Рейтинг: Цена: 6282.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is devoted to the phenomenon of quasi-periodic motion in dynamical systems. On the one hand, Hamiltonian systems occur that are in complete order: these are the integrable systems where all motion is confined to invariant tori.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru