Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Analytic Theory of Continued Fractions III, Lisa Jacobsen


Варианты приобретения
Цена: 3492.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Lisa Jacobsen
Название:  Analytic Theory of Continued Fractions III
ISBN: 9783540518303
Издательство: Springer
Классификация:
ISBN-10: 3540518304
Обложка/Формат: Paperback
Страницы: 148
Вес: 0.23 кг.
Дата издания: 25.10.1989
Серия: Lecture Notes in Mathematics
Язык: English
Размер: 234 x 156 x 8
Основная тема: Mathematics
Подзаголовок: Proceedings of a Seminar-Workshop, held in Redstone, USA, June 26 - July 5, 1988
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии


Neverending Fractions

Автор: Borwein
Название: Neverending Fractions
ISBN: 0521186498 ISBN-13(EAN): 9780521186490
Издательство: Cambridge Academ
Рейтинг:
Цена: 6019.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This contemporary introduction to the fascinating theory of continued fractions covers a variety of applications that will interest graduates, postgraduates and researchers, as well as teachers and even amateur enthusiasts.

Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions

Автор: Stephen C. Milne
Название: Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions
ISBN: 1441952136 ISBN-13(EAN): 9781441952134
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 years to Diophantus, and continues more recently with the works of Fermat, Euler, Lagrange, Jacobi, Glaisher, Ramanujan, Hardy, Mordell, Andrews, and others. Jacobi's elliptic function approach dates from his epic Fundamenta Nova of 1829. Here, the author employs his combinatorial/elliptic function methods to derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's (1829) 4 and 8 squares identities to 4n2 or 4n(n+1) squares, respectively, without using cusp forms such as those of Glaisher or Ramanujan for 16 and 24 squares. These results depend upon new expansions for powers of various products of classical theta functions. This is the first time that infinite families of non-trivial exact explicit formulas for sums of squares have been found.

The author derives his formulas by utilizing combinatorics to combine a variety of methods and observations from the theory of Jacobi elliptic functions, continued fractions, Hankel or Turanian determinants, Lie algebras, Schur functions, and multiple basic hypergeometric series related to the classical groups. His results (in Theorem 5.19) generalize to separate infinite families each of the 21 of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions in sections 40-42 of the Fundamental Nova. The author also uses a special case of his methods to give a derivation proof of the two Kac and Wakimoto (1994) conjectured identities concerning representations of a positive integer by sums of 4n2 or 4n(n+1) triangular numbers, respectively. These conjectures arose in the study of Lie algebras and have also recently been proved by Zagier using modular forms. George Andrews says in a preface of this book, This impressive work will undoubtedly spur others both in elliptic functions and in modular forms to build on these wonderful discoveries.'

Audience: This research monograph on sums of squares is distinguished by its diversity of methods and extensive bibliography. It contains both detailed proofs and numerous explicit examples of the theory. This readable work will appeal to both students and researchers in number theory, combinatorics, special functions, classical analysis, approximation theory, and mathematical physics.

Geometry of continued fractions

Автор: Karpenkov, Oleg
Название: Geometry of continued fractions
ISBN: 3642393675 ISBN-13(EAN): 9783642393679
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Geometry of Continued Fractions

History of Continued Fractions and Pad? Approximants

Автор: Claude Brezinski
Название: History of Continued Fractions and Pad? Approximants
ISBN: 3642634885 ISBN-13(EAN): 9783642634888
Издательство: Springer
Рейтинг:
Цена: 30745.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The history of continued fractions is certainly one of the longest among those of mathematical concepts, since it begins with Euclid`s algorithm for the great- est common divisor at least three centuries B.C.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия