Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Mixed Motives and Algebraic K-Theory, Uwe Jannsen


Варианты приобретения
Цена: 6288.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Uwe Jannsen
Название:  Mixed Motives and Algebraic K-Theory
ISBN: 9783540522607
Издательство: Springer
Классификация:
ISBN-10: 3540522603
Обложка/Формат: Paperback
Страницы: 250
Вес: 0.37 кг.
Дата издания: 07.02.1990
Серия: Lecture Notes in Mathematics
Язык: English
Размер: 234 x 156 x 14
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The relations that could or should exist between algebraic cycles, algebraic K-theory, and the cohomology of - possibly singular - varieties, are the topic of investigation of this book. The author proceeds in an axiomatic way, combining the concepts of twisted Poincar duality theories, weights, and tensor categories. One thus arrives at generalizations to arbitrary varieties of the Hodge and Tate conjectures to explicit conjectures on l-adic Chern characters for global fields and to certain counterexamples for more general fields. It is to be hoped that these relations ions will in due course be explained by a suitable tensor category of mixed motives. An approximation to this is constructed in the setting of absolute Hodge cycles, by extending this theory to arbitrary varieties. The book can serve both as a guide for the researcher, and as an introduction to these ideas for the non-expert, provided (s)he knows or is willing to learn about K-theory and the standard cohomology theories of algebraic varieties.


Problems in Algebraic Number Theory

Автор: Murty M. Ram
Название: Problems in Algebraic Number Theory
ISBN: 1441919678 ISBN-13(EAN): 9781441919670
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved

Algebraic Number Theory

Автор: Neukirch
Название: Algebraic Number Theory
ISBN: 3540653996 ISBN-13(EAN): 9783540653998
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Aims to provide an introduction to algebraic number theory, which is largely based on the conception of (one-dimensional) arithmetic algebraic geometry. This book discusses the classical concepts from the viewpoint of Arakelov theory. It concludes with a chapter on zeta-functions and L-series.

Mixed Motives and their Realization in Derived Categories

Автор: Annette Huber
Название: Mixed Motives and their Realization in Derived Categories
ISBN: 3540594752 ISBN-13(EAN): 9783540594758
Издательство: Springer
Рейтинг:
Цена: 6288.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The conjectual theory of mixed motives would be a universal cohomology theory in arithmetic algebraic geometry. This text describes the approach to motives via their well-defined realizations, which includes a review of several known cohomology theories.

A Course in Computational Algebraic Number Theory

Автор: Henri Cohen
Название: A Course in Computational Algebraic Number Theory
ISBN: 3642081428 ISBN-13(EAN): 9783642081422
Издательство: Springer
Рейтинг:
Цена: 9077.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With the advent of powerful computing tools and numerous advances in math- ematics, computer science and cryptography, algorithmic number theory has become an important subject in its own right. Both external and internal pressures gave a powerful impetus to the development of more powerful al- gorithms. These in turn led to a large number of spectacular breakthroughs. To mention but a few, the LLL algorithm which has a wide range of appli- cations, including real world applications to integer programming, primality testing and factoring algorithms, sub-exponential class group and regulator algorithms, etc ... Several books exist which treat parts of this subject. (It is essentially impossible for an author to keep up with the rapid pace of progress in all areas of this subject.) Each book emphasizes a different area, corresponding to the author's tastes and interests. The most famous, but unfortunately the oldest, is Knuth's Art of Computer Programming, especially Chapter 4. The present book has two goals. First, to give a reasonably comprehensive introductory course in computational number theory. In particular, although we study some subjects in great detail, others are only mentioned, but with suitable pointers to the literature. Hence, we hope that this book can serve as a first course on the subject. A natural sequel would be to study more specialized subjects in the existing literature.

Classical Theory of Algebraic Numbers

Автор: Paulo Ribenboim
Название: Classical Theory of Algebraic Numbers
ISBN: 1441928707 ISBN-13(EAN): 9781441928702
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part one is devoted to residue classes and quadratic residues. In part two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. part three is devoted to Kummers theory of cyclotomic fields, and includes Bernoulli numbers and the proof of Fermats Last Theorem for regular prime exponents. Finally, in part four, the emphasis is on analytical methods and it includes Dirichlets Theorem on primes in arithmetic progressions, the theorem of Chebotarev and class number formulas. A careful study of this book will provide a solid background to the learning of more recent topics, as suggested at the end of the book.

Computational Algebraic Number Theory

Автор: M.E. Pohst
Название: Computational Algebraic Number Theory
ISBN: 3764329130 ISBN-13(EAN): 9783764329136
Издательство: Springer
Рейтинг:
Цена: 4186.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Computational algebraic number theory has been attracting broad interest in the last few years due to its potential applications in coding theory and cryptography. This book emphasizes practical algorithms for the computation of integral bases, the unit group and the class group of arbitrary algebraic number fields.

Capacity Theory on Algebraic Curves

Автор: Robert S. Rumely
Название: Capacity Theory on Algebraic Curves
ISBN: 3540514104 ISBN-13(EAN): 9783540514107
Издательство: Springer
Рейтинг:
Цена: 6981.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Capacity is a measure of size for sets, with diverse applications in potential theory, probability and number theory. This book lays foundations for a theory of capacity for adelic sets on algebraic curves. It brings out a connection between the classical Green`s functions of analysis and Neron`s local height pairings.

Algebraic Number Theory

Автор: Serge Lang
Название: Algebraic Number Theory
ISBN: 0387942254 ISBN-13(EAN): 9780387942254
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: It covers all of the basic material of classical algebraic number theory, giving the student the background necessary for the study of further topics in algebraic number theory, such as cyclotomic fields, or modular forms."Lang`s books are always of great value for the graduate student and the research mathematician.

Algebraic Design Theory and Hadamard Matrices

Автор: Charles J. Colbourn
Название: Algebraic Design Theory and Hadamard Matrices
ISBN: 3319372181 ISBN-13(EAN): 9783319372181
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Starting with applications in experimental design theory and the theory of error-correcting codes, they have found unexpected and important applications in cryptography, quantum information theory, communications, and networking.

Algebraic Number Theory and Fermat`s Last Theorem, Fourth Edition

Автор: Stewart
Название: Algebraic Number Theory and Fermat`s Last Theorem, Fourth Edition
ISBN: 1498738397 ISBN-13(EAN): 9781498738392
Издательство: Taylor&Francis
Рейтинг:
Цена: 13014.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Updated to reflect current research, Algebraic Number Theory and Fermat's Last Theorem, Fourth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics--the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers from a relatively concrete point of view. Students will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work.

New to the Fourth Edition

  • Provides up-to-date information on unique prime factorization for real quadratic number fields, especially Harper's proof that Z(√14) is Euclidean
  • Presents an important new result: Mihăilescu's proof of the Catalan conjecture of 1844
  • Revises and expands one chapter into two, covering classical ideas about modular functions and highlighting the new ideas of Frey, Wiles, and others that led to the long-sought proof of Fermat's Last Theorem
  • Improves and updates the index, figures, bibliography, further reading list, and historical remarks

Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.

Algebraic Theory of Quadratic Numbers

Автор: Trifkovic Mak
Название: Algebraic Theory of Quadratic Numbers
ISBN: 1461477166 ISBN-13(EAN): 9781461477167
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book shows the techniques of elementary arithmetic, ring theory and linear algebra working together to prove important theorems, such as the unique factorization of ideals and the finiteness of the ideal class group. Includes numerous exercises.

Contributions in Analytic and Algebraic Number Theory

Автор: Valentin Blomer; Preda Mih?ilescu
Название: Contributions in Analytic and Algebraic Number Theory
ISBN: 1489991581 ISBN-13(EAN): 9781489991584
Издательство: Springer
Рейтинг:
Цена: 25853.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The text that comprises this volume is a collection of surveys and original works from experts in the fields of algebraic number theory, analytic number theory, harmonic analysis, and hyperbolic geometry.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия