Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Periodic Solutions of Nonlinear Dynamical Systems, Eduard Reithmeier


Варианты приобретения
Цена: 3492.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Eduard Reithmeier
Название:  Periodic Solutions of Nonlinear Dynamical Systems
ISBN: 9783540545125
Издательство: Springer
Классификация:



ISBN-10: 3540545123
Обложка/Формат: Paperback
Страницы: 174
Вес: 0.26 кг.
Дата издания: 25.09.1991
Серия: Lecture Notes in Mathematics
Язык: English
Размер: 234 x 156 x 10
Основная тема: Mathematics
Подзаголовок: Numerical Computation, Stability, Bifurcation and Transition to Chaos
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Addressing mathematicians and engineers working with nonlinear dynamics, this monograph describes the multiple shooting method, which is employed in numerically computing limit cycles. The theory is supported by numerous examples, mainly from the field of nonlinear vibrations.


Spectra of Random and Almost-Periodic Operators

Автор: Leonid Pastur; Alexander Figotin
Название: Spectra of Random and Almost-Periodic Operators
ISBN: 364274348X ISBN-13(EAN): 9783642743481
Издательство: Springer
Рейтинг:
Цена: 14365.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is so not only because of the subject`s position at the in- tersection of operator spectral theory, probability theory and mathematical physics, but also because of its importance to theoretical physics, and par- ticularly to the theory of disordered condensed systems.

Classification and Approximation of Periodic Functions

Автор: A.I. Stepanets
Название: Classification and Approximation of Periodic Functions
ISBN: 0792336038 ISBN-13(EAN): 9780792336037
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The chapters are split into sections, which, in turn, are split into subsections enumerated by two numbers: the first stands for the number of the section while the second for the number ofthe subsection itself. The same numeration is used for all kinds of statements and formulas. If we refer to statements or formulas in other chapters, we use triple numeration where the first number stands for the chapter and the other two have the same sense. The results presented in this book were discussed on the seminars at the Institute of Mathematics of Ukrainian Academy ofSciences, at the Steklov Mathematical Institute of the Academy of Sciences of the USSR, at Moscow and Tbilisi State Universities. I am deeply grateful to the heads of these seminars Professors V. K. Dzyadyk, N. P. Kor- neichuk, S. B. Stechkin, P. L. U1yanov, and L. V. Zhizhiashvili as well as to the mem- bers ofthese seminars that took an active part in the discussions. In TRODUCTIon It is well known for many years that every 21t -periodic summable function f(x) can be associated in a one-to-one manner with its Fourier series (1. 1) Slfl where I It = - f f(t)cosktdt 1t -It and I It - f f(t)sinktdt. 1t -It Therefore, if for approximation of a given function f(-), it is necessary to construct a sequence ofpolynomials Pn (.

Periodic Solutions of Singular Lagrangian Systems

Автор: A. Ambrosetti; V. Coti-Zelati
Название: Periodic Solutions of Singular Lagrangian Systems
ISBN: 0817636552 ISBN-13(EAN): 9780817636555
Издательство: Springer
Рейтинг:
Цена: 14673.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A summary and synthesis of recent research demonstrating that variational methods can be used to successfully handle systems with singular potential, the Lagrangian systems. The classic cases of the Kepler problem and the N-body problem are used as specific examples.

Quasi-Periodic Motions in Families of Dynamical Systems

Автор: Hendrik W. Broer; George B. Huitema; Mikhail B. Se
Название: Quasi-Periodic Motions in Families of Dynamical Systems
ISBN: 3540620257 ISBN-13(EAN): 9783540620259
Издательство: Springer
Рейтинг:
Цена: 6282.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is devoted to the phenomenon of quasi-periodic motion in dynamical systems. On the one hand, Hamiltonian systems occur that are in complete order: these are the integrable systems where all motion is confined to invariant tori.

Periodic Solutions of Hamiltonian Systems and Related Topics

Автор: P.H. Rabinowitz; A. Ambrosetti; I. Ekeland; E.J. Z
Название: Periodic Solutions of Hamiltonian Systems and Related Topics
ISBN: 9027725535 ISBN-13(EAN): 9789027725530
Издательство: Springer
Рейтинг:
Цена: 28929.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Proceedings of the NATO Advanced Research Workshop, Il Ciocco, Italy, October 13-17, 1986

Periodic Solutions of Singular Lagrangian Systems

Автор: A. Ambrosetti; V. Coti-Zelati
Название: Periodic Solutions of Singular Lagrangian Systems
ISBN: 1461267056 ISBN-13(EAN): 9781461267058
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Thismonographdealswiththeexistenceofperiodicmotionsof Lagrangiansystemswith ndegreesoffreedom ij + V'(q) =0, where Visasingularpotential.Aprototypeofsuchaproblem, evenifitisnottheonlyphysicallyinterestingone, istheKepler problem .. q 0 q+yqr= . This, jointlywiththemoregeneralN-bodyproblem, hasalways beentheobjectofagreatdealofresearch.Mostofthoseresults arebasedonperturbationmethods, andmakeuseofthespecific featuresoftheKeplerpotential. OurapproachismoreonthelinesofNonlinearFunctional Analysis: ourmainpurposeistogiveafunctionalframefor systemswithsingularpotentials, includingtheKeplerandthe N-bodyproblemasparticularcases.PreciselyweuseCritical PointTheorytoobtainexistenceresults, qualitativeinnature, whichholdtrueforbroadclassesofpotentials.Thishighlights thatthevariationalmethods, whichhavebeenemployedtoob- tainimportantadvancesinthestudyofregularHamiltonian systems, canbesuccessfallyusedtohandlesingularpotentials aswell. Theresearchonthistopicisstillinevolution, andtherefore theresultswewillpresentarenottobeintendedasthefinal ones. Indeedamajorpurposeofourdiscussionistopresent methodsandtoolswhichhavebeenusedinstudyingsuchprob- lems. Vlll PREFACE Partofthematerialofthisvolumehasbeenpresentedina seriesoflecturesgivenbytheauthorsatSISSA, Trieste, whom wewouldliketothankfortheirhospitalityandsupport. We wishalsotothankUgoBessi, PaoloCaldiroli, FabioGiannoni, LouisJeanjean, LorenzoPisani, EnricoSerra, KazunakaTanaka, EnzoVitillaroforhelpfulsuggestions. May26,1993 Notation n 1.For x, yE IR, x. ydenotestheEuclideanScalarproduct, and IxltheEuclideannorm. 2. meas(A)denotestheLebesguemeasureofthesubset Aof n IR - 3.Wedenoteby ST = 0, T]/{a, T}theunitarycirclepara- metrizedby t E 0, T].Wewillalsowrite SI= ST=I. n 1 n 4.Wewillwrite sn = {xE IR +: Ixl =I}andn = IR \{O}. n 5.Wedenoteby LP( O, T], IR ),1 p +00, theLebesgue spaces, equippedwiththestandardnorm lIulip. l n l n 6. H (ST, IR )denotestheSobolevspaceof u E H,2(0, T; IR ) suchthat u(O) = u(T).Thenormin HIwillbedenoted by lIull2 = lIull + lIull - 7.Wedenoteby(-1-)and11-11respectivelythescalarproduct andthenormoftheHilbertspace E. 8.For uE E, EHilbertorBanachspace, wedenotetheball ofcenter uandradiusrby B(u, r) = {vE E: lIu- vii r}.Wewillalsowrite B = B(O, r). r 1 1 9.WesetA (n) = {uE H (St, n)}. k 10.For VE C (1Rxil, IR)wedenoteby V'(t, x)thegradient of Vwithrespectto x. l 11.Given f E C (M, IR), MHilbertmanifold, welet r = {uEM: f(u) a}, f-l(a, b) = {uE E: a f(u) b}. x NOTATION 12.Given f E C1(M, JR), MHilbertmanifold, wewilldenote by Zthesetofcriticalpointsof fon Mandby Zctheset Z U f-l(c, c). 13.Givenasequence UnE E, EHilbertspace, by Un ---"" Uwe willmeanthatthesequence Unconvergesweaklyto u. 14.With (E)wewilldenotethesetoflinearandcontinuous operatorson E. 15.With Ck''''(A, JR)wewilldenotethesetoffunctions ffrom AtoJR, ktimesdifferentiablewhosek-derivativeisHolder continuousofexponent0: . Main Assumptions Wecollecthere, forthereader'sconvenience, themainassump- tionsonthepotential Vusedthroughoutthebook. (VO) VEC1(lRXO, lR), V(t+T, x)=V(t, X) V(t, x)ElRXO, (VI) V(t, x)

Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

Автор: Seshadev Padhi; John R. Graef; P. D. N. Srinivasu
Название: Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics
ISBN: 8132218949 ISBN-13(EAN): 9788132218944
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

Автор: Seshadev Padhi; John R. Graef; P. D. N. Srinivasu
Название: Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics
ISBN: 8132235428 ISBN-13(EAN): 9788132235422
Издательство: Springer
Рейтинг:
Цена: 13275.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Chapter 1. Introduction.- Chapter 2. Positive Periodic Solutions of Nonlinear Functional Differential Equations with Parameter λ.- Chapter 3. Multiple Periodic Solutions of a System of Functional Differential Equations.- Chapter 4. Multiple Periodic Solutions of Nonlinear Functional Differential Equations.- Chapter 5. Asymptotic Behavior of Periodic Solutions of Differential Equations of First Order.- Bibliography.

Global Bifurcation of Periodic Solutions with Symmetry

Автор: Bernold Fiedler
Название: Global Bifurcation of Periodic Solutions with Symmetry
ISBN: 3540192344 ISBN-13(EAN): 9783540192343
Издательство: Springer
Рейтинг:
Цена: 3487.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Suppose one encounters a continuous time dynamical system with some built-in symmetry. Should one expect periodic motions which somehow reflect this symmetry? And how would periodicity harmonize with symmetry? This book probes these questions.

Partial differential equations: time-periodic solutions

Автор: Otto Vejvoda; L. Herrmann; V. Lovicar; M. Sova; I.
Название: Partial differential equations: time-periodic solutions
ISBN: 9024727723 ISBN-13(EAN): 9789024727728
Издательство: Springer
Рейтинг:
Цена: 34799.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Periodic Flows to Chaos in Time-delay Systems

Автор: Luo
Название: Periodic Flows to Chaos in Time-delay Systems
ISBN: 331942663X ISBN-13(EAN): 9783319426631
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book for the first time examines periodic motions to chaos in time-delay systems, which exist extensively in engineering. For a long time, the stability of time-delay systems at equilibrium has been of great interest from the Lyapunov theory-based methods, where one cannot achieve the ideal results. Thus, time-delay discretization in time-delay systems was used for the stability of these systems. In this volume, Dr. Luo presents an accurate method based on the finite Fourier series to determine periodic motions in nonlinear time-delay systems. The stability and bifurcation of periodic motions are determined by the time-delayed system of coefficients in the Fourier series and the method for nonlinear time-delay systems is equivalent to the Laplace transformation method for linear time-delay systems.

Central configurations, periodic orbits, and hamiltonian systems

Автор: Llibre, Jaume Moeckel, Richard Simo, Carles
Название: Central configurations, periodic orbits, and hamiltonian systems
ISBN: 3034809328 ISBN-13(EAN): 9783034809320
Издательство: Springer
Рейтинг:
Цена: 4191.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 1 The Averaging Theory for Computing Periodic Orbits.- Introduction: the classical theory.- Averaging theory for arbitrary order and dimension.- Three applications of Theorem.- 2 Lectures on Central Configurations.- The n-body problem.- Symmetries and integrals.- Central configurations and self-similar solutions.- Matrix equations of motion.- Homographic motions of central configurations in Rd.- Albouy-Chenciner reduction and relative equilibria in Rd.- Homographic motions in Rd.- Central configurations as critical points.- Collinear central configurations.- Morse indices of non-collinear central configurations.- Morse theory for CC's and SBC's.- Dziobek configurations.- Convex Dziobek central configurations.- Generic finiteness for Dziobek central configurations.- Some open problems.- 3 Dynamical Properties of Hamiltonian Systems.- Introduction.- Low dimension.- Some theoretical results, their implementation and practical tools.- Applications to Celestial Mechanics.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия