Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Periodic Solutions of Nonlinear Dynamical Systems, Eduard Reithmeier


Варианты приобретения
Цена: 3492.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-09-15
Ориентировочная дата поставки: Октябрь
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Eduard Reithmeier
Название:  Periodic Solutions of Nonlinear Dynamical Systems
ISBN: 9783540545125
Издательство: Springer
Классификация:



ISBN-10: 3540545123
Обложка/Формат: Paperback
Страницы: 174
Вес: 0.26 кг.
Дата издания: 25.09.1991
Серия: Lecture Notes in Mathematics
Язык: English
Размер: 234 x 156 x 10
Основная тема: Mathematics
Подзаголовок: Numerical Computation, Stability, Bifurcation and Transition to Chaos
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Addressing mathematicians and engineers working with nonlinear dynamics, this monograph describes the multiple shooting method, which is employed in numerically computing limit cycles. The theory is supported by numerous examples, mainly from the field of nonlinear vibrations.


Periodic Solutions of Singular Lagrangian Systems

Автор: A. Ambrosetti; V. Coti-Zelati
Название: Periodic Solutions of Singular Lagrangian Systems
ISBN: 0817636552 ISBN-13(EAN): 9780817636555
Издательство: Springer
Рейтинг:
Цена: 14673.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A summary and synthesis of recent research demonstrating that variational methods can be used to successfully handle systems with singular potential, the Lagrangian systems. The classic cases of the Kepler problem and the N-body problem are used as specific examples.

Quasi-Periodic Motions in Families of Dynamical Systems

Автор: Hendrik W. Broer; George B. Huitema; Mikhail B. Se
Название: Quasi-Periodic Motions in Families of Dynamical Systems
ISBN: 3540620257 ISBN-13(EAN): 9783540620259
Издательство: Springer
Рейтинг:
Цена: 6282.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is devoted to the phenomenon of quasi-periodic motion in dynamical systems. On the one hand, Hamiltonian systems occur that are in complete order: these are the integrable systems where all motion is confined to invariant tori.

Periodic Solutions of Hamiltonian Systems and Related Topics

Автор: P.H. Rabinowitz; A. Ambrosetti; I. Ekeland; E.J. Z
Название: Periodic Solutions of Hamiltonian Systems and Related Topics
ISBN: 9027725535 ISBN-13(EAN): 9789027725530
Издательство: Springer
Рейтинг:
Цена: 28929.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Proceedings of the NATO Advanced Research Workshop, Il Ciocco, Italy, October 13-17, 1986

Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

Автор: Seshadev Padhi; John R. Graef; P. D. N. Srinivasu
Название: Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics
ISBN: 8132218949 ISBN-13(EAN): 9788132218944
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

Автор: Seshadev Padhi; John R. Graef; P. D. N. Srinivasu
Название: Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics
ISBN: 8132235428 ISBN-13(EAN): 9788132235422
Издательство: Springer
Рейтинг:
Цена: 13275.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Chapter 1. Introduction.- Chapter 2. Positive Periodic Solutions of Nonlinear Functional Differential Equations with Parameter λ.- Chapter 3. Multiple Periodic Solutions of a System of Functional Differential Equations.- Chapter 4. Multiple Periodic Solutions of Nonlinear Functional Differential Equations.- Chapter 5. Asymptotic Behavior of Periodic Solutions of Differential Equations of First Order.- Bibliography.

Global Bifurcation of Periodic Solutions with Symmetry

Автор: Bernold Fiedler
Название: Global Bifurcation of Periodic Solutions with Symmetry
ISBN: 3540192344 ISBN-13(EAN): 9783540192343
Издательство: Springer
Рейтинг:
Цена: 3487.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Suppose one encounters a continuous time dynamical system with some built-in symmetry. Should one expect periodic motions which somehow reflect this symmetry? And how would periodicity harmonize with symmetry? This book probes these questions.

Partial differential equations: time-periodic solutions

Автор: Otto Vejvoda; L. Herrmann; V. Lovicar; M. Sova; I.
Название: Partial differential equations: time-periodic solutions
ISBN: 9024727723 ISBN-13(EAN): 9789024727728
Издательство: Springer
Рейтинг:
Цена: 34799.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Periodic Flows to Chaos in Time-delay Systems

Автор: Luo
Название: Periodic Flows to Chaos in Time-delay Systems
ISBN: 331942663X ISBN-13(EAN): 9783319426631
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book for the first time examines periodic motions to chaos in time-delay systems, which exist extensively in engineering. For a long time, the stability of time-delay systems at equilibrium has been of great interest from the Lyapunov theory-based methods, where one cannot achieve the ideal results. Thus, time-delay discretization in time-delay systems was used for the stability of these systems. In this volume, Dr. Luo presents an accurate method based on the finite Fourier series to determine periodic motions in nonlinear time-delay systems. The stability and bifurcation of periodic motions are determined by the time-delayed system of coefficients in the Fourier series and the method for nonlinear time-delay systems is equivalent to the Laplace transformation method for linear time-delay systems.

Central configurations, periodic orbits, and hamiltonian systems

Автор: Llibre, Jaume Moeckel, Richard Simo, Carles
Название: Central configurations, periodic orbits, and hamiltonian systems
ISBN: 3034809328 ISBN-13(EAN): 9783034809320
Издательство: Springer
Рейтинг:
Цена: 4191.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 1 The Averaging Theory for Computing Periodic Orbits.- Introduction: the classical theory.- Averaging theory for arbitrary order and dimension.- Three applications of Theorem.- 2 Lectures on Central Configurations.- The n-body problem.- Symmetries and integrals.- Central configurations and self-similar solutions.- Matrix equations of motion.- Homographic motions of central configurations in Rd.- Albouy-Chenciner reduction and relative equilibria in Rd.- Homographic motions in Rd.- Central configurations as critical points.- Collinear central configurations.- Morse indices of non-collinear central configurations.- Morse theory for CC's and SBC's.- Dziobek configurations.- Convex Dziobek central configurations.- Generic finiteness for Dziobek central configurations.- Some open problems.- 3 Dynamical Properties of Hamiltonian Systems.- Introduction.- Low dimension.- Some theoretical results, their implementation and practical tools.- Applications to Celestial Mechanics.

Periodic Systems

Автор: Sergio Bittanti; Patrizio Colaneri
Название: Periodic Systems
ISBN: 1849968055 ISBN-13(EAN): 9781849968058
Издательство: Springer
Рейтинг:
Цена: 22201.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers a comprehensive treatment of the theory of periodic systems, including the problems of filtering and control. It covers an array of topics, presenting an overview of the field and focusing on discrete-time signals and systems.

Homogeneization and Periodic Structures

Автор: Sab Karam, Leb?e Arthur
Название: Homogeneization and Periodic Structures
ISBN: 1848216521 ISBN-13(EAN): 9781848216525
Издательство: Wiley
Рейтинг:
Цена: 22010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book gives new insight on plate models in the linear elasticity framework tacking into account heterogeneities and thickness effects. It is targeted to graduate students how want to discover plate models but deals also with latest developments on higher order models. Plates models are both an ancient matter and a still active field of research. First attempts date back to the beginning of the 19th century with Sophie Germain. Very efficient models have been suggested for homogeneous and isotropic plates by Love (1888) for thin plates and Reissner (1945) for thick plates. However, the extension of such models to more general situations --such as laminated plates with highly anisotropic layers-- and periodic plates --such as honeycomb sandwich panels-- raised a number of difficulties. An extremely wide literature is accessible on these questions, from very simplistic approaches, which are very limited, to extremely elaborated mathematical theories, which might refrain the beginner. Starting from continuum mechanics concepts, this book introduces plate models of progressive complexity and tackles rigorously the influence of the thickness of the plate and of the heterogeneity. It provides also latest research results. The major part of the book deals with a new theory which is the extension to general situations of the well established Reissner-Mindlin theory. These results are completely new and give a new insight to some aspects of plate theories which were controversial till recently.

Periodic Solutions of Singular Lagrangian Systems

Автор: A. Ambrosetti; V. Coti-Zelati
Название: Periodic Solutions of Singular Lagrangian Systems
ISBN: 1461267056 ISBN-13(EAN): 9781461267058
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Thismonographdealswiththeexistenceofperiodicmotionsof Lagrangiansystemswith ndegreesoffreedom ij + V'(q) =0, where Visasingularpotential.Aprototypeofsuchaproblem, evenifitisnottheonlyphysicallyinterestingone, istheKepler problem .. q 0 q+yqr= . This, jointlywiththemoregeneralN-bodyproblem, hasalways beentheobjectofagreatdealofresearch.Mostofthoseresults arebasedonperturbationmethods, andmakeuseofthespecific featuresoftheKeplerpotential. OurapproachismoreonthelinesofNonlinearFunctional Analysis: ourmainpurposeistogiveafunctionalframefor systemswithsingularpotentials, includingtheKeplerandthe N-bodyproblemasparticularcases.PreciselyweuseCritical PointTheorytoobtainexistenceresults, qualitativeinnature, whichholdtrueforbroadclassesofpotentials.Thishighlights thatthevariationalmethods, whichhavebeenemployedtoob- tainimportantadvancesinthestudyofregularHamiltonian systems, canbesuccessfallyusedtohandlesingularpotentials aswell. Theresearchonthistopicisstillinevolution, andtherefore theresultswewillpresentarenottobeintendedasthefinal ones. Indeedamajorpurposeofourdiscussionistopresent methodsandtoolswhichhavebeenusedinstudyingsuchprob- lems. Vlll PREFACE Partofthematerialofthisvolumehasbeenpresentedina seriesoflecturesgivenbytheauthorsatSISSA, Trieste, whom wewouldliketothankfortheirhospitalityandsupport. We wishalsotothankUgoBessi, PaoloCaldiroli, FabioGiannoni, LouisJeanjean, LorenzoPisani, EnricoSerra, KazunakaTanaka, EnzoVitillaroforhelpfulsuggestions. May26,1993 Notation n 1.For x, yE IR, x. ydenotestheEuclideanScalarproduct, and IxltheEuclideannorm. 2. meas(A)denotestheLebesguemeasureofthesubset Aof n IR - 3.Wedenoteby ST = 0, T]/{a, T}theunitarycirclepara- metrizedby t E 0, T].Wewillalsowrite SI= ST=I. n 1 n 4.Wewillwrite sn = {xE IR +: Ixl =I}andn = IR \{O}. n 5.Wedenoteby LP( O, T], IR ),1 p +00, theLebesgue spaces, equippedwiththestandardnorm lIulip. l n l n 6. H (ST, IR )denotestheSobolevspaceof u E H,2(0, T; IR ) suchthat u(O) = u(T).Thenormin HIwillbedenoted by lIull2 = lIull + lIull - 7.Wedenoteby(-1-)and11-11respectivelythescalarproduct andthenormoftheHilbertspace E. 8.For uE E, EHilbertorBanachspace, wedenotetheball ofcenter uandradiusrby B(u, r) = {vE E: lIu- vii r}.Wewillalsowrite B = B(O, r). r 1 1 9.WesetA (n) = {uE H (St, n)}. k 10.For VE C (1Rxil, IR)wedenoteby V'(t, x)thegradient of Vwithrespectto x. l 11.Given f E C (M, IR), MHilbertmanifold, welet r = {uEM: f(u) a}, f-l(a, b) = {uE E: a f(u) b}. x NOTATION 12.Given f E C1(M, JR), MHilbertmanifold, wewilldenote by Zthesetofcriticalpointsof fon Mandby Zctheset Z U f-l(c, c). 13.Givenasequence UnE E, EHilbertspace, by Un ---"" Uwe willmeanthatthesequence Unconvergesweaklyto u. 14.With (E)wewilldenotethesetoflinearandcontinuous operatorson E. 15.With Ck''''(A, JR)wewilldenotethesetoffunctions ffrom AtoJR, ktimesdifferentiablewhosek-derivativeisHolder continuousofexponent0: . Main Assumptions Wecollecthere, forthereader'sconvenience, themainassump- tionsonthepotential Vusedthroughoutthebook. (VO) VEC1(lRXO, lR), V(t+T, x)=V(t, X) V(t, x)ElRXO, (VI) V(t, x)


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия