Classical Diophantine Equations, Vladimir G. Sprindzuk
Автор: W.M. Schmidt Название: Diophantine Approximation ISBN: 3540097627 ISBN-13(EAN): 9783540097624 Издательство: Springer Рейтинг: Цена: 6981.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In 1970, at the University of Colorado, the author delivered a course of lectures on his famous generalization, relating to Roth`s theorem on rational approxi- mations to algebraic numbers. This volume is a version of the original mimeographed notes on the course.
Автор: J?zsef Beck Название: Probabilistic Diophantine Approximation ISBN: 3319354655 ISBN-13(EAN): 9783319354651 Издательство: Springer Рейтинг: Цена: 13275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book gives a comprehensive treatment of random phenomena and distribution results in diophantine approximation, with a particular emphasis on quadratic irrationals.
Описание: Presents an elementary introduction to number theory and its different aspects: approximation of real numbers, irrationality and transcendence problems, continued fractions, diophantine equations, quadratic forms, arithmetical functions and algebraic number theory.
Автор: J?zsef Beck Название: Probabilistic Diophantine Approximation ISBN: 3319107402 ISBN-13(EAN): 9783319107400 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book gives a comprehensive treatment of random phenomena and distribution results in diophantine approximation, with a particular emphasis on quadratic irrationals.
Автор: Andreescu Titu Название: Quadratic Diophantine Equations ISBN: 1493938800 ISBN-13(EAN): 9781493938803 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reveiws the last two decades of computational techniques and progress in the classical theory of quadratic diophantine equations. Presents important quadratic diophantine equations and applications, and includes excellent examples and open problems.
Описание: This book reviews higher dimensional Nevanlinna theory and its relationship with Diophantine approximation theory. Coverage builds up from the classical theory of meromorphic functions on the complex plane with full proofs, to the current state of research.
Автор: Umberto Zannier Название: On Some Applications of Diophantine Approximations ISBN: 8876425195 ISBN-13(EAN): 9788876425196 Издательство: Springer Рейтинг: Цена: 3634.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The paper contains proofs of most important results in transcendence theory and diophantine analysis, notably Siegel`s celebrated theorem on integral points on algebraic curves. Many modern versions of Siegel`s proof have appeared, but none seem to faithfully reproduce all features of the original one.
Автор: Jones Название: O-Minimality and Diophantine Geometry ISBN: 1107462495 ISBN-13(EAN): 9781107462496 Издательство: Cambridge Academ Рейтинг: Цена: 9186.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This collection of articles brings the researcher up to date with recent applications of logic, specifically model theory, to conjectures associated with those of Manin-Mumford and Andre-Oort. Originating from a short course, it combines original papers with background articles on related topics.
Автор: J?rn Steuding Название: Diophantine Analysis ISBN: 3319488163 ISBN-13(EAN): 9783319488165 Издательство: Springer Рейтинг: Цена: 9781.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This collection of course notes from a number theory summer school focus on aspects of Diophantine Analysis, addressed to Master and doctoral students as well as everyone who wants to learn the subject. The topics range from Baker’s method of bounding linear forms in logarithms (authored by Sanda Buja?i? and Alan Filipin), metric diophantine approximation discussing in particular the yet unsolved Littlewood conjecture (by Simon Kristensen), Minkowski’s geometry of numbers and modern variations by Bombieri and Schmidt (Tapani Matala-aho), and a historical account of related number theory(ists) at the turn of the 19th Century (Nicola M.R. Oswald). Each of these notes serves as an essentially self-contained introduction to the topic. The reader gets a thorough impression of Diophantine Analysis by its central results, relevant applications and open problems. The notes are complemented with many references and an extensive register which makes it easy to navigate through the book.
Автор: Evertse Название: Discriminant Equations in Diophantine Number Theory ISBN: 1107097614 ISBN-13(EAN): 9781107097612 Издательство: Cambridge Academ Рейтинг: Цена: 23285.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Discriminant equations are an important class of Diophantine equations. This book provides the first comprehensive account of discriminant equations and their applications, building on the authors` earlier volume, Unit Equations in Diophantine Number Theory. Background material makes the book accessible to experts and young researchers alike.
Описание: The circle method has its genesis in a paper of Hardy and Ramanujan (see Hardy 1])in 1918concernedwiththepartitionfunction andtheproblemofrep- resenting numbers as sums ofsquares. Later, in a series of papers beginning in 1920entitled "some problems of'partitio numerorum''', Hardy and Littlewood (see Hardy 1]) created and developed systematically a new analytic method, the circle method in additive number theory. The most famous problems in ad- ditive number theory, namely Waring's problem and Goldbach's problem, are treated in their papers. The circle method is also called the Hardy-Littlewood method. Waring's problem may be described as follows: For every integer k 2 2, there is a number s= s( k) such that every positive integer N is representable as (1) where Xi arenon-negative integers. This assertion wasfirst proved by Hilbert 1] in 1909. Using their powerful circle method, Hardy and Littlewood obtained a deeper result on Waring's problem. They established an asymptotic formula for rs(N), the number of representations of N in the form (1), namely k 1 provided that 8 2 (k - 2)2 - +5. Here
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru