Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Computing and Combinatorics, Ding-Zhu Du; Ming Li


Варианты приобретения
Цена: 16769.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Ding-Zhu Du; Ming Li
Название:  Computing and Combinatorics
ISBN: 9783540602163
Издательство: Springer
Классификация: ISBN-10: 354060216X
Обложка/Формат: Paperback
Страницы: 662
Вес: 0.93 кг.
Дата издания: 02.08.1995
Серия: Lecture Notes in Computer Science
Язык: English
Размер: 234 x 156 x 35
Основная тема: Computer Science
Подзаголовок: First Annual International Conference, COCOON '95, Xi'an, China, August 24-26, 1995. Proceedings
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: These conference proceedings cover all current aspects of theoretical computer science and combinatorial mathematics related to computing. In particular, there are sections on complexity theory, graph drawing, computational geometry, databases, graph algorithms and distributed programming.


Counting: The Art of Enumerative Combinatorics

Автор: George E. Martin
Название: Counting: The Art of Enumerative Combinatorics
ISBN: 1441929150 ISBN-13(EAN): 9781441929150
Издательство: Springer
Рейтинг:
Цена: 7819.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Counting: The Art of Enumerative Combinatorics provides an introduction to discrete mathematics that addresses questions that begin, How many ways are there to...For example, How many ways are there to order a collection of 12 ice cream cones if 8 flavors are available? At the end of the book the reader should be able to answer such nontrivial counting questions as, How many ways are there to color the faces of a cube if k colors are available with each face having exactly one color? or How many ways are there to stack n poker chips, each of which can be red, white, blue, or green, such that each red chip is adjacent to at least 1 green chip? Since there are no prerequisites, this book can be used for college courses in combinatorics at the sophomore level for either computer science or mathematics students. The first five chapters have served as the basis for a graduate course for in-service teachers. Chapter 8 introduces graph theory.

Extremal Combinatorics / With Applications in Computer Science

Автор: Jukna Stasys
Название: Extremal Combinatorics / With Applications in Computer Science
ISBN: 3540663134 ISBN-13(EAN): 9783540663133
Издательство: Springer
Рейтинг:
Цена: 9077.00 р.
Наличие на складе: Поставка под заказ.

Описание: The book is a concise, self-contained and up-to-date introduction to extremal combinatorics for non-specialists. Strong emphasis is made on theorems with particularly elegant and informative proofs which may be called gems of the theory. A wide spectrum of most powerful combinatorial tools is presented: methods of extremal set theory, the linear algebra method, the probabilistic method and fragments of Ramsey theory. A throughout discussion of some recent applications to computer science motivates the liveliness and inherent usefulness of these methods to approach problems outside combinatorics. No special combinatorial or algebraic background is assumed. All necessary elements of linear algebra and discrete probability are introduced before their combinatorial applications. Aimed primarily as an introductory text for graduates, it provides also a compact source of modern extremal combinatorics for researchers in computer science and other fields of discrete mathematics.

Using the Borsuk-Ulam Theorem / Lectures on Topological Methods in Combinatorics and Geometry

Автор: Matousek Jiri, BjГ¶rner A., Ziegler G.M.
Название: Using the Borsuk-Ulam Theorem / Lectures on Topological Methods in Combinatorics and Geometry
ISBN: 3540003622 ISBN-13(EAN): 9783540003625
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. They are scattered in research papers or outlined in surveys, and they often use topological notions not commonly known among combinatorialists or computer scientists.This book is the first textbook treatment of a significant part of such results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level (for example, homology theory and homotopy groups are completely avoided). No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained. This text started with a one-semester graduate course the author taught in fall 1993 in Prague. The transcripts of the lectures by the participants served as a basis of the first version. Some years later, a course partially based on that text was taught by GГјnter M. Ziegler in Berlin. The book is based on a thoroughly rewritten version prepared during a pre-doctoral course the author taught at the ETH Zurich in fall 2001.Most of the material was covered in the course: Chapter 1 was assigned as an introductory reading text, and the other chapters were presented in approximately 30 hours of teaching (by 45 minutes), with some omissions throughout and with only a sketchy presentation of the last chapter.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия