Microlocal Analysis and Precise Spectral Asymptotics, Victor Ivrii
Автор: Luigi Rodino Название: Microlocal Analysis and Spectral Theory ISBN: 9401063710 ISBN-13(EAN): 9789401063715 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Proceedings of the NATO Advanced Study Institute, Il Ciocco, Castelvecchio Pascoli (Lucca), Italy, 23 September-3 October 1996
Автор: Monika Ludwig; Vitali D. Milman; Vladimir Pestov; Название: Asymptotic Geometric Analysis ISBN: 1489993312 ISBN-13(EAN): 9781489993311 Издательство: Springer Рейтинг: Цена: 18167.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book examines methods for analyzing the geometric and linear properties of finite dimensional objects, normed spaces and convex bodies, especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity.
Автор: A.G. Chentsov Название: Asymptotic Attainability ISBN: 0792343026 ISBN-13(EAN): 9780792343028 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Deals with the construction of correct extensions of extremal problems including problems of multicriterial optimization and more general problems of optimization with respect to a cone.
Автор: George Isac; S?ndor Zolt?n N?meth Название: Scalar and Asymptotic Scalar Derivatives ISBN: 1441944842 ISBN-13(EAN): 9781441944849 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is devoted to the study of scalar and asymptotic scalar derivatives and their applications to some problems in nonlinear analysis, Riemannian geometry and applied mathematics. The theoretical results are developed in particular with respect to the study of complementarity problems, monotonicity of nonlinear mappings and the non-gradient type monotonicity on Riemannian manifolds.
Автор: Pilipovic Steven Et Al Название: Asymptotic Behavior Of Generalized Functions ISBN: 9814366846 ISBN-13(EAN): 9789814366847 Издательство: World Scientific Publishing Рейтинг: Цена: 15048.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The asymptotic analysis has obtained new impulses with the general development of various branches of mathematical analysis and their applications. In this book, such impulses originate from the use of slowly varying functions and the asymptotic behavior of generalized functions.
Автор: Alice Guionnet Название: Large Random Matrices: Lectures on Macroscopic Asymptotics ISBN: 3540698965 ISBN-13(EAN): 9783540698968 Издательство: Springer Рейтинг: Цена: 6282.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Random matrix theory has developed in connection with various fields of mathematics and physics. This title includes notes that emphasize the relation with the problem of enumerating complicated graphs, and the related large deviations questions.
Автор: Shahla Molahajloo; Stevan Pilipovi?; Joachim Toft; Название: Pseudo-Differential Operators, Generalized Functions and Asymptotics ISBN: 3034808038 ISBN-13(EAN): 9783034808033 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume consists of twenty peer-reviewed papers from the special session on pseudodifferential operators and the special session on generalized functions and asymptotics at the Eighth Congress of ISAAC held at the Peoples' Friendship University of Russia in Moscow on August 22‒27, 2011. The category of papers on pseudo-differential operators contains such topics as elliptic operators assigned to diffeomorphisms of smooth manifolds, analysis on singular manifolds with edges, heat kernels and Green functions of sub-Laplacians on the Heisenberg group and Lie groups with more complexities than but closely related to the Heisenberg group, Lp-boundedness of pseudo-differential operators on the torus, and pseudo-differential operators related to time-frequency analysis. The second group of papers contains various classes of distributions and algebras of generalized functions with applications in linear and nonlinear differential equations, initial value problems and boundary value problems, stochastic and Malliavin-type differential equations. This second group of papers are related to the third collection of papers via the setting of Colombeau-type spaces and algebras in which microlocal analysis is developed by means of techniques in asymptotics. The volume contains the synergies of the three areas treated and is a useful complement to volumes 155, 164, 172, 189, 205 and 213 published in the same series in, respectively, 2004, 2006, 2007, 2009, 2010 and 2011.
Описание: An examination of weakly nonlocal solitary waves. It describes a class of waves which radiate away from the core of the disturbance but are nevertheless very long-lived nonlinear disturbances. It provides specific examples in the areas of water waves, particle physics, meteorology, oceanography, fiber optics pulses and dynamical systems theory.
Автор: Jan van Neerven Название: The Asymptotic Behaviour of Semigroups of Linear Operators ISBN: 3034899440 ISBN-13(EAN): 9783034899444 Издательство: Springer Рейтинг: Цена: 18161.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Over the past ten years, the asymptotic theory of one-parameter semigroups of operators has witnessed an explosive development. A number oflong-standing open problems have recently been solved and the theory seems to have obtained a certain degree of maturity. These notes, based on a course delivered at the University of Tiibingen in the academic year 1994-1995, represent a first attempt to organize the available material, most of which exists only in the form of research papers. If A is a bounded linear operator on a complex Banach space X, then it is an easy consequence of the spectral mapping theorem exp(tO"(A)) = O"(exp(tA)), t E JR, and Gelfand's formula for the spectral radius that the uniform growth bound of the wt family {exp(tA)h o, i. e. the infimum of all wE JR such that II exp(tA)II:::: Me for some constant M and all t 2: 0, is equal to the spectral bound s(A) = sup{Re A: A E O"(A)} of A. This fact is known as Lyapunov's theorem. Its importance resides in the fact that the solutions of the initial value problem du(t) =A () dt u t, u(O) = x, are given by u(t) = exp(tA)x. Thus, Lyapunov's theorem implies that the expo- nential growth of the solutions of the initial value problem associated to a bounded operator A is determined by the location of the spectrum of A.
Описание: The results of this exceptional thesis on free boundary problems in singularly perturbed PDEs develop our understanding of the effects of strong competition between species. The research has a wealth of valuable applications in both physics and biology.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru