Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Alfio Quarteroni; B. Cockburn; C. Johnson; C.-W. S
Автор: Vazquez-cendon, M. Elena Название: Solving hyperbolic equations with finite volume methods ISBN: 3319147838 ISBN-13(EAN): 9783319147833 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Finite volume methods are used in numerous applications and by a broad multidisciplinary scientific community. The book communicates this important tool to students, researchers in training and academics involved in the training of students in different science and technology fields.
Описание: This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. The book is the third volume of the subseries "Advances in Partial Differential Equations".
Автор: Serge Alinhac Название: Blowup for Nonlinear Hyperbolic Equations ISBN: 1461275881 ISBN-13(EAN): 9781461275886 Издательство: Springer Рейтинг: Цена: 14673.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The content of this book corresponds to a one-semester course taught at the University of Paris-Sud (Orsay) in the spring 1994. It is accessible to students or researchers with a basic elementary knowledge of Partial Dif- ferential Equations, especially of hyperbolic PDE (Cauchy problem, wave operator, energy inequality, finite speed of propagation, symmetric systems, etc.). This course is not some final encyclopedic reference gathering all avail- able results. We tried instead to provide a short synthetic view of what we believe are the main results obtained so far, with self-contained proofs. In fact, many of the most important questions in the field are still completely open, and we hope that this monograph will give young mathe- maticians the desire to perform further research. The bibliography, restricted to papers where blowup is explicitly dis- cussed, is the only part we tried to make as complete as possible (despite the new preprints circulating everyday) j the references are generally not mentioned in the text, but in the Notes at the end of each chapter. Basic references corresponding best to the content of these Notes are the books by Courant and Friedrichs CFr], Hormander HoI] and Ho2], Majda Ma] and Smoller Sm], and the survey papers by John J06], Strauss St] and Zuily Zu].
Описание: This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. The book is the third volume of the subseries "Advances in Partial Differential Equations".
Автор: Abgrall, Remi Название: Handbook of Numerical Methods for Hyperbolic Problems,17 ISBN: 0444637893 ISBN-13(EAN): 9780444637895 Издательство: Elsevier Science Рейтинг: Цена: 26781.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations.
This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.
Автор: Shi Jin; Lorenzo Pareschi Название: Uncertainty Quantification for Hyperbolic and Kinetic Equations ISBN: 331967109X ISBN-13(EAN): 9783319671093 Издательство: Springer Рейтинг: Цена: 13275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods.
Автор: Michael Ruzhansky; Mitsuru Sugimoto; Jens Wirth Название: Evolution Equations of Hyperbolic and Schr?dinger Type ISBN: 303480802X ISBN-13(EAN): 9783034808026 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Evolution equations of hyperbolic or more general p-evolution type form an active field of current research. The book gives an overview of a variety of ongoing current research in the field and, therefore, allows researchers as well as students to grasp new aspects and broaden their understanding of the area.
Описание: This book examines recent developments in the numerics of partial differential equations. It emphasizes methods of high order and applications in computational fluid dynamics.
Автор: Mass Per Pettersson; Gianluca Iaccarino; Jan Nords Название: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations ISBN: 3319107135 ISBN-13(EAN): 9783319107134 Издательство: Springer Рейтинг: Цена: 15672.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations
Автор: Thomas H. Otway Название: Elliptic–Hyperbolic Partial Differential Equations ISBN: 3319197606 ISBN-13(EAN): 9783319197609 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Claude Carasso; Pierre-Arnaud Raviart; Denis Serre Название: Nonlinear Hyperbolic Problems ISBN: 3540182004 ISBN-13(EAN): 9783540182009 Издательство: Springer Рейтинг: Цена: 4884.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Deals with theoretical problems that emerge in the resolution of nonlinear hyperbolic systems than with numerical methods.
Описание: Devoted to the development of the asymptotic theory for analysing solutions of a range of nonlinear periodic boundary value problems. This book suggests a systematic approach to constructing asymptotic methods for solving wave equations. It is useful to researchers and postgraduate students whose work involves partial differential equations.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru