Автор: V.K. Andreev; O.V. Kaptsov; Vladislav V. Pukhnache Название: Applications of Group-Theoretical Methods in Hydrodynamics ISBN: 0792352157 ISBN-13(EAN): 9780792352150 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents applications of group analysis of differential equations to various models used in hydrodynamics. This book contains examples of exact solutions to the boundary value problems for the Euler and Navier-Stokes equations. It is intended for postgraduate students and researchers whose work involves partial differential equations.
Автор: Arnold Название: Topological Methods in Hydrodynamics ISBN: 038794947X ISBN-13(EAN): 9780387949475 Издательство: Springer Рейтинг: Цена: 18167.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Topological hydrodynamics is a young branch of mathematics studying topological features of flows with complicated trajectories, as well as their applications
to fluid motions. It is situated at the crossroad of hyrdodynamical stability theory, Riemannian and symplectic geometry, magnetohydrodynamics, theory of Lie algebras and Lie groups,
knot theory, and dynamical systems. Applications of this approach include topological classification of steady fluid flows, descriptions of the Korteweg-de Vries equation as a geodesic
flow, and results on Riemannian geometry of diffeomorphism groups, explaining, in particular, why longterm dynamical weather forecasts are not reliable.
Topological Methods
in Hydrodynamics is the first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics for a unified point of view. T
e necessary preliminary notions both in hydrodynamics and pure mathematics are described with plenty of examples and figures. The book is accessible to graduate students as well as
to both pure and applied mathematicians working in the fields of hydrodynamics, Lie groups, dynamical systems and differential geometry.
Автор: Nikolay D. Kopachevskii; Selim G. Krein Название: Operator Approach to Linear Problems of Hydrodynamics ISBN: 3034895259 ISBN-13(EAN): 9783034895255 Издательство: Springer Рейтинг: Цена: 23508.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: V.K. Andreev; O.V. Kaptsov; Vladislav V. Pukhnache Название: Applications of Group-Theoretical Methods in Hydrodynamics ISBN: 9048150833 ISBN-13(EAN): 9789048150830 Издательство: Springer Рейтинг: Цена: 37734.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: It was long ago that group analysis of differential equations became a powerful tool for studying nonlinear equations and boundary value problems. We consider it justifiable to enrich the set of exact solutions with rank one and rank two in- variant and partially invariant solutions to the equations of hydrodynamics.
Автор: M.M. Hapaev Название: Averaging in Stability Theory ISBN: 0792315812 ISBN-13(EAN): 9780792315810 Издательство: Springer Рейтинг: Цена: 13275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents a generalization of the second Lyapunov method involving its combination with the asymptotic averaging method. This method can be applied to multifrequency systems having resonance harmonics. A new method is also described for estimating small denominators in multifrequency systems.
Автор: Andrea Bacciotti; Lionel Rosier Название: Liapunov Functions and Stability in Control Theory ISBN: 3642059686 ISBN-13(EAN): 9783642059681 Издательство: Springer Рейтинг: Цена: 19589.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents a modern and self-contained treatment of the Liapunov method for stability analysis, in the framework of mathematical nonlinear control theory.
Автор: A. Georgescu Название: Hydrodynamic stability theory ISBN: 9048182891 ISBN-13(EAN): 9789048182893 Издательство: Springer Рейтинг: Цена: 33541.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The great number of varied approaches to hydrodynamic stability theory appear as a bulk of results whose classification and discussion are well-known in the literature.
Автор: Ansgar J?ngel Название: Quasi-hydrodynamic Semiconductor Equations ISBN: 3034895216 ISBN-13(EAN): 9783034895217 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents a hierarchy of macroscopic models for semiconductor devices, studying three classes of models in detail: isentropic drift-diffusion equations, energy-transport models, and quantum hydrodynamic equations.
Автор: Sergio Albeverio; Giuseppe Da Prato; Franco Flando Название: SPDE in Hydrodynamics: Recent Progress and Prospects ISBN: 3540784926 ISBN-13(EAN): 9783540784920 Издательство: Springer Рейтинг: Цена: 4884.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reflects on the three lecture courses making up the CIME summer school on Fluid Dynamics at Cetraro in 2005. This title describes deterministic and stochastic models of hydrodynamics. It also describes rigorous mathematical results for multidimensional Navier-Stokes systems.
Автор: David R. Merkin; F.F. Afagh; F.F. Afagh; A.L. Smir Название: Introduction to the Theory of Stability ISBN: 1461284775 ISBN-13(EAN): 9781461284772 Издательство: Springer Рейтинг: Цена: 12012.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Many books on stability theory of motion have been published in various lan guages, including English. Also, using appropriate examples, he demonstrates the process of investigating the stability of motion from the formulation of a problem and obtaining the differential equations of perturbed motion to complete analysis and recommendations.
Автор: Gerard Iooss; Daniel D. Joseph Название: Elementary Stability and Bifurcation Theory ISBN: 0387970681 ISBN-13(EAN): 9780387970684 Издательство: Springer Рейтинг: Цена: 10335.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In its most general form bifurcation theory is a theory of asymptotic solutions of nonlinear equations. By asymptotic solutions we mean, for example, steady solutions, time-periodic solutions, and quasi-periodic solutions. The purpose of this book is to teach the theory of bifurcation of asymptotic solutions of evolution problems governed by nonlinear differential equations. We have written this book for the broadest audience of potentially interested learners: engineers, biologists, chemists, physicists, mathematicians, economists, and others whose work involves understanding asymptotic solutions of nonlinear differential equations. To accomplish our aims, we have thought it necessary to make the analysis: (1) general enough to apply to the huge variety of applications which arise in science and technology; and (2) simple enough so that it can be understood by persons whose mathe- matical training does not extend beyond the classical methods of analysis which were popular in the nineteenth century. Of course, it is not possible to achieve generality and simplicity in a perfect union but, in fact, the general theory is simpler than the detailed theory required for particular applications. The general theory abstracts from the detailed problems only the essential features and provides the student with the skeleton on which detailed structures of the applications must rest. lt is generally believed that the mathematical theory of bifurcation requires some functional analysis and some ofthe methods of topology and dynamics.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru