Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Mean Curvature Flow and Isoperimetric Inequalities, Manuel Ritor?; Vicente Miquel; Carlo Sinestrari; J


Варианты приобретения
Цена: 4186.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Manuel Ritor?; Vicente Miquel; Carlo Sinestrari; J
Название:  Mean Curvature Flow and Isoperimetric Inequalities
ISBN: 9783034602129
Издательство: Springer
Классификация:
ISBN-10: 303460212X
Обложка/Формат: Paperback
Страницы: 113
Вес: 0.32 кг.
Дата издания: 19.10.2009
Серия: Advanced Courses in Mathematics - CRM Barcelona
Язык: English
Размер: 236 x 168 x 10
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Geometric flows have many applications in physics and geometry. The mean curvature flow also has many geometric applications, in analogy with the Ricci flow of metrics on abstract riemannian manifolds.


Isoperimetric Inequalities

Автор: Chavel
Название: Isoperimetric Inequalities
ISBN: 1107402271 ISBN-13(EAN): 9781107402270
Издательство: Cambridge Academ
Рейтинг:
Цена: 8554.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This advanced introduction emphasizes the variety of ideas, techniques, and applications of the subject. It discusses inequalities in Euclidean and Riemannian geometry, methods of classical differential geometry and elementary modern geometric measure theory, discretization of smooth spaces, and the influence of isoperimetric inequalities on heat diffusion on Riemannian manifolds.

Total Mean Curvature And Submanifolds Of Finite Type (2Nd Edition)

Автор: Chen Bang-Yen
Название: Total Mean Curvature And Submanifolds Of Finite Type (2Nd Edition)
ISBN: 9814616680 ISBN-13(EAN): 9789814616683
Издательство: World Scientific Publishing
Рейтинг:
Цена: 14414.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: During the last four decades, there were numerous important developments on total mean curvature and the theory of finite type submanifolds.

Constant Mean Curvature Surfaces with Boundary

Автор: Rafael L?pez
Название: Constant Mean Curvature Surfaces with Boundary
ISBN: 3662512564 ISBN-13(EAN): 9783662512562
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields.

While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of "compact surfaces with boundaries," narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs.

The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems.

Metric spaces of non-positive curvature

Автор: Bridson Martin R., Haefliger AndrГ©
Название: Metric spaces of non-positive curvature
ISBN: 3540643249 ISBN-13(EAN): 9783540643241
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds.

Total Mean Curvature and Submanifolds of Finite Type: 2nd Edition

Автор: Chen Bang-Yen
Название: Total Mean Curvature and Submanifolds of Finite Type: 2nd Edition
ISBN: 9814616699 ISBN-13(EAN): 9789814616690
Издательство: World Scientific Publishing
Рейтинг:
Цена: 7128.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: During the last four decades, there were numerous important developments on total mean curvature and the theory of finite type submanifolds.

Metric Spaces of Non-Positive Curvature

Автор: Martin R. Bridson; Andr? H?fliger
Название: Metric Spaces of Non-Positive Curvature
ISBN: 3642083994 ISBN-13(EAN): 9783642083990
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The purpose of this book is to describe the global properties of complete simply- connected spaces that are non-positively curved in the sense of A. D. Alexandrov and to examine the structure of groups that act properly on such spaces by isometries. Thus the central objects of study are metric spaces in which every pair of points can be joined by an arc isometric to a compact interval of the real line and in which every triangle satisfies the CAT(O) inequality. This inequality encapsulates the concept of non-positive curvature in Riemannian geometry and allows one to reflect the same concept faithfully in a much wider setting - that of geodesic metric spaces. Because the CAT(O) condition captures the essence of non-positive curvature so well, spaces that satisfy this condition display many of the elegant features inherent in the geometry of non-positively curved manifolds. There is therefore a great deal to be said about the global structure of CAT(O) spaces, and also about the structure of groups that act on them by isometries - such is the theme of this book. 1 The origins of our study lie in the fundamental work of A. D. Alexandrov .

The Motion of a Surface by Its Mean Curvature. (MN-20):

Автор: Brakke Kenneth a.
Название: The Motion of a Surface by Its Mean Curvature. (MN-20):
ISBN: 0691611513 ISBN-13(EAN): 9780691611518
Издательство: Wiley
Рейтинг:
Цена: 7128.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Kenneth Brakke studies in general dimensions a dynamic system of surfaces of no inertial mass driven by the force of surface tension and opposed by a frictional force proportional to velocity. He formulates his study in terms of varifold surfaces and uses the methods of geometric measure theory to develop a mathematical description of the motion of

Analytic and Probabilistic Approaches to Dynamics in Negative Curvature

Автор: Fran?oise Dal`Bo; Marc Peign?; Andrea Sambusetti
Название: Analytic and Probabilistic Approaches to Dynamics in Negative Curvature
ISBN: 3319381172 ISBN-13(EAN): 9783319381176
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The work consists of two introductory courses, developing different points of view on the study of the asymptotic behaviour of the geodesic flow, namely: the probabilistic approach via martingales and mixing (by Stephane Le Borgne);


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия