Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Uncertainty and Surprise in Complex Systems, Reuben R. McDaniel; Dean J. Driebe


Варианты приобретения
Цена: 16977.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Reuben R. McDaniel; Dean J. Driebe
Название:  Uncertainty and Surprise in Complex Systems
ISBN: 9783642062728
Издательство: Springer
Классификация:





ISBN-10: 3642062725
Обложка/Формат: Paperback
Страницы: 202
Вес: 0.30 кг.
Дата издания: 22.10.2010
Серия: Understanding Complex Systems
Язык: English
Размер: 234 x 156 x 11
Основная тема: Physics
Подзаголовок: Questions on Working with the Unexpected
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Complexity science has been a source of new insight in physical and social systems and has demonstrated that unpredictability and surprise are fundamental aspects of the world around us.


Intelligent Systems in Oil Field Development under Uncertainty

Автор: Marco A. C. Pacheco; Marley M. B. R. Vellasco
Название: Intelligent Systems in Oil Field Development under Uncertainty
ISBN: 3642100961 ISBN-13(EAN): 9783642100963
Издательство: Springer
Рейтинг:
Цена: 23508.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The decision to invest in oil field development is an extremely complex problem. This book is a result of about four years of research in this area. It presents applications of intelligent decision support systems to oil field development under uncertainty.

Quantifying Uncertainty in Subsurface Systems

Автор: Caers
Название: Quantifying Uncertainty in Subsurface Systems
ISBN: 1119325838 ISBN-13(EAN): 9781119325833
Издательство: Wiley
Рейтинг:
Цена: 25019.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Under the Earth's surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge.

Volume highlights include:

  • A multi-disciplinary treatment of uncertainty quantification
  • Case studies with actual data that will appeal to methodology developers
  • A Bayesian evidential learning framework that reduces computation and modeling time

Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians.

Read the Editors' Vox: https: //eos.org/editors-vox/quantifying-uncertainty-about-earths-resources

Reviews, The Leading Edge, SEG, May 2020

The subsurface medium created by geologic processes is not always well understood. The data we collect in an attempt to characterize the subsurface can be incomplete and inaccurate. However, if we understand the uncertainty of our data and the models we generate from them, we can make better decisions regarding the management of subsurface resources. Modeling and managing subsurface resources, and properly characterizing and understanding the uncertainties, requires the integration of a variety of scientific and engineering disciplines.

Five case studies are outlined in the introductory chapter, which are used to demonstrate various methods throughout the book. The second chapter introduces the basic notions in decision analysis. Uncertainty quantification is only relevant within the decision framework used. Models alone do not quantify uncer­tainty, but do allow the determination of key variables that influ­ence models and decisions. Next, an overview of the various data science methods relevant to uncertainty quantification in the subsurface is provided. Sensitivity analysis is then covered, specifi­cally Monte Carlo-based sensitivity analysis. The next three chapters develop the Bayesian approach to uncertainty quantifica­tion, and this is the focus of the book.

All of this is brought together in Chapter 8, which describes a solution regarding quantifying the uncertainties for each of the problems presented in the first chapter. The authors admit that it is not the only solution. No single solution fits all problems of uncertainty quantification. The results in this chapter allow the reader to see the previously described methods applied and how choices influence models and decisions. The final two chapters discuss various software components necessary to implement the strategies presented in the book and challenges faced in the future of uncertainty quantification.

The book uses a number of relevant subsurface problems to explore the various aspects of uncertainty quantification. Understanding uncertainty, and how it affects modeling and decision outcomes, is not always straightforward. However, it is necessary in order to make good, consistent decisions. The book is not an easy read. Some portions require good mathematical understanding of the underlying principles. However, the book is well documented and organized. I would say that is not a good book for a beginner, but it is a good resource for someone to get a grounding to go further into the subject. I appreciate the authors putting together this book on a complex problem that is important to our industry.

-- Da

IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty

Автор: H.Y. Hu; E. Kreuzer
Название: IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty
ISBN: 9401776431 ISBN-13(EAN): 9789401776431
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is a state-of-the-art treatise on the problems of both nonlinearity and uncertainty in the dynamics and control of engineering systems. The concept of dynamics and control implies the combination of dynamic analysis and control synthesis.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия