Evolutionary Multi-objective Optimization in Uncertain Environments, Chi-Keong Goh; Kay Chen Tan
Автор: Carlos M. Fonseca; Xavier Gandibleux; Jin-Kao Hao; Название: Evolutionary Multi-Criterion Optimization ISBN: 3642010199 ISBN-13(EAN): 9783642010194 Издательство: Springer Рейтинг: Цена: 14673.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constitutes the refereed proceedings of the 5th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2009, held in Nantes, France in April 2009. This book presents 39 revised full papers together with 5 invited talks that were reviewed and selected from 72 submissions.
Описание: This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-and coming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include: optimization in dynamic environments, multi-objective bilevel programming, handling high dimensionality under many objectives, and evolutionary multitasking. In addition to theory and methodology, this book describes several real-world applications from various domains, which will expose the readers to the versatility of evolutionary multi-objective optimization.
Описание: This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design.
Описание: This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design.
Автор: Shengxiang Yang; Yew-Soon Ong; Yaochu Jin Название: Evolutionary Computation in Dynamic and Uncertain Environments ISBN: 3642080650 ISBN-13(EAN): 9783642080654 Издательство: Springer Рейтинг: Цена: 36570.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Discussion includes representative methods for addressing major sources of uncertainties in evolutionary computation, including handle of noisy fitness functions, use of approximate fitness functions, search for robust solutions, and tracking moving optimums.
Автор: Heike Trautmann; G?nter Rudolph; Kathrin Klamroth; Название: Evolutionary Multi-Criterion Optimization ISBN: 3319541560 ISBN-13(EAN): 9783319541563 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the 9th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2017 held in Munster, Germany in March 2017. The EMO 2017 aims to discuss all aspects of EMO development and deployment, including theoretical foundations; parallel EMO models; EMO algorithm implementations.
Автор: Ant?nio Gaspar-Cunha; Carlos Henggeler Antunes; Ca Название: Evolutionary Multi-Criterion Optimization ISBN: 3319158910 ISBN-13(EAN): 9783319158914 Издательство: Springer Рейтинг: Цена: 12298.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the 8th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2015 held in Guimaraes, Portugal in March/April 2015.
Автор: Ant?nio Gaspar-Cunha; Carlos Henggeler Antunes; Ca Название: Evolutionary Multi-Criterion Optimization ISBN: 331915933X ISBN-13(EAN): 9783319159331 Издательство: Springer Рейтинг: Цена: 8944.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the 8th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2015 held in Guimaraes, Portugal in March/April 2015.
Автор: Carlos Coello Coello; Gary B. Lamont; David A. van Название: Evolutionary Algorithms for Solving Multi-Objective Problems ISBN: 1489994602 ISBN-13(EAN): 9781489994608 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. It provides links to a complete set of teaching tutorials, exercises and solutions.
Автор: Efr?n Mezura-Montes Название: Constraint-Handling in Evolutionary Optimization ISBN: 3642101550 ISBN-13(EAN): 9783642101557 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is the result of a special session on constraint-handling techniques used in evolutionary algorithms within the Congress on Evolutionary Computation (CEC) in 2007. It presents recent research in constraint-handling in evolutionary optimization.
Описание: Transistor-level design for complex mixed-signal systems-on-chip remains difficult to automate. This book shows how a modified genetic algorithm kernel can improve efficiency in the analog IC design cycle and includes a worked example of the method.
Описание: Transistor-level design for complex mixed-signal systems-on-chip remains difficult to automate. This book shows how a modified genetic algorithm kernel can improve efficiency in the analog IC design cycle and includes a worked example of the method.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru