Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Information Theory and Statistical Learning, Frank Emmert-Streib; Matthias Dehmer


Варианты приобретения
Цена: 18167.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Frank Emmert-Streib; Matthias Dehmer
Название:  Information Theory and Statistical Learning
ISBN: 9781441946508
Издательство: Springer
Классификация:






ISBN-10: 1441946500
Обложка/Формат: Paperback
Страницы: 439
Вес: 0.63 кг.
Дата издания: 04.11.2010
Язык: English
Размер: 234 x 156 x 23
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.


Statistical Learning with Sparsity

Автор: Hastie
Название: Statistical Learning with Sparsity
ISBN: 1498712169 ISBN-13(EAN): 9781498712163
Издательство: Taylor&Francis
Рейтинг:
Цена: 16843.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Discover New Methods for Dealing with High-Dimensional Data

A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data.

Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of 1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso.

In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.

Statistical Learning and Data Sciences

Автор: Alexander Gammerman; Vladimir Vovk; Harris Papadop
Название: Statistical Learning and Data Sciences
ISBN: 3319170902 ISBN-13(EAN): 9783319170909
Издательство: Springer
Рейтинг:
Цена: 8944.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the Third International Symposium on Statistical Learning and Data Sciences, SLDS 2015, held in Egham, Surrey, UK, April 2015.

Neural Networks and Statistical Learning

Автор: Ke-Lin Du; M. N. S. Swamy
Название: Neural Networks and Statistical Learning
ISBN: 1447170474 ISBN-13(EAN): 9781447170471
Издательство: Springer
Рейтинг:
Цена: 14365.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Inclusive coverage of all the essential neural network applications in a statistical learning framework makes this a baseline text for students and researchers, with 25 chapters on all the major approaches that include a wealth of examples and exercises.

Information Theory and Statistical Learning

Автор: Frank Emmert-Streib; Matthias Dehmer
Название: Information Theory and Statistical Learning
ISBN: 0387848150 ISBN-13(EAN): 9780387848150
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.

Introduction to Machine Learning with Applications in Information Security

Автор: Stamp
Название: Introduction to Machine Learning with Applications in Information Security
ISBN: 1138626783 ISBN-13(EAN): 9781138626782
Издательство: Taylor&Francis
Рейтинг:
Цена: 8726.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This class-tested textbook will provide in-depth coverage of the fundamentals of machine learning, with an exploration of applications in information security. The book will cover malware detection, cryptography, and intrusion detection. The book will be relevant for students in machine learning and computer security courses.

Information theory and reliable communication

Автор: Gallager, Robert G.
Название: Information theory and reliable communication
ISBN: 0471290483 ISBN-13(EAN): 9780471290483
Издательство: Wiley
Рейтинг:
Цена: 36266.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Explore information theory as it relates to the fundamental aspects of communication systems

Information theory is at work all around us, every day, and in all our communications. Information Theory and Reliable Communication delves into the mathematical models of sources and channels in communication systems and then explores the framework for constructing highly-detailed models of real-world sources and channels. The text then extends further into information theory by breaking encoders and decoders into two parts and studying the mechanisms that make more effective communication systems. Taken as a whole, the book provides exhaustive coverage of the practical use of information theory in developing communications systems.

Human Interface and the Management of Information: Supporting Learning, Decision-Making and Collaboration

Автор: Sakae Yamamoto
Название: Human Interface and the Management of Information: Supporting Learning, Decision-Making and Collaboration
ISBN: 3319585231 ISBN-13(EAN): 9783319585239
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The two-volume set LNCS 10273 and 10274 constitutes the refereed proceedings of the thematic track on Human Interface and the Management of Information, held as part of the 19th HCI International 2017, in Vancouver, BC, Canada, in July 2017.

HCII 2017 received a total of 4340 submissions, of which 1228 papers were accepted for publication after a careful reviewing process.
The 102 papers presented in these volumes were organized in topical sections as follows:
Part I: Visualization Methods and Tools; Information and Interaction Design; Knowledge and Service Management; Multimodal and Embodied Interaction.
Part II: Information and Learning; Information in Virtual and Augmented Reality; Recommender and Decision Support Systems; Intelligent Systems; Supporting Collaboration and User Communities; Case Studies.

Concurrent Learning and Information Processing

Автор: Robert J. Jannarone
Название: Concurrent Learning and Information Processing
ISBN: 1461380499 ISBN-13(EAN): 9781461380498
Издательство: Springer
Рейтинг:
Цена: 14673.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Many monitoring, forecasting, and control operations occur in settings where relationships among key measurements must be learned quickly. The book describes benefits and features of the system, statistical foundations for the system, and several related models.

Machine Learning and Statistical Modeling Approaches to Image Retrieval

Автор: Yixin Chen; Jia Li; James Z. Wang
Название: Machine Learning and Statistical Modeling Approaches to Image Retrieval
ISBN: 1475779305 ISBN-13(EAN): 9781475779301
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Machine Learning and Statistical Modeling Approaches to Image Retrieval describes several approaches of integrating machine learning and statistical modeling into an image retrieval and indexing system that demonstrates promising results.

Information Theoretic Learning

Автор: Jose C. Principe
Название: Information Theoretic Learning
ISBN: 1461425859 ISBN-13(EAN): 9781461425854
Издательство: Springer
Рейтинг:
Цена: 21661.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is the first cohesive treatment of ITL algorithms to adapt linear or nonlinear learning machines both in supervised and unsupervised paradigms. It compares the performance of ITL algorithms with the second order counterparts in many applications.

Learning to Rank for Information Retrieval

Автор: Tie-Yan Liu
Название: Learning to Rank for Information Retrieval
ISBN: 3642441246 ISBN-13(EAN): 9783642441240
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The author of this book first reviews the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms. Scientific theoretical soundness is combined with broad development and application experiences.

Statistical & Machine-Learning Data

Автор: Ratner
Название: Statistical & Machine-Learning Data
ISBN: 1498797601 ISBN-13(EAN): 9781498797603
Издательство: Taylor&Francis
Рейтинг:
Цена: 17609.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The third edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия