Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Abstraction, Refinement and Proof for Probabilistic Systems, Annabelle McIver; Charles Carroll Morgan


Варианты приобретения
Цена: 23058.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Annabelle McIver; Charles Carroll Morgan
Название:  Abstraction, Refinement and Proof for Probabilistic Systems
ISBN: 9781441923127
Издательство: Springer
Классификация:




ISBN-10: 1441923128
Обложка/Формат: Paperback
Страницы: 388
Вес: 0.56 кг.
Дата издания: 19.11.2010
Серия: Monographs in Computer Science
Язык: English
Размер: 234 x 156 x 21
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Illustrates by example the typical steps necessary in computer science to build a mathematical model of any programming paradigm .

Presents results of a large and integrated body of research in the area of `quantitative` program logics.




Probabilistic Graphical Models: Principles and Techniques

Автор: Koller Daphne, Friedman Nir
Название: Probabilistic Graphical Models: Principles and Techniques
ISBN: 0262013193 ISBN-13(EAN): 9780262013192
Издательство: MIT Press
Рейтинг:
Цена: 21161.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.

Most tasks require a person or an automated system to reason -- to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.

Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Probabilistic Techniques in Analysis

Автор: Bass
Название: Probabilistic Techniques in Analysis
ISBN: 0387943870 ISBN-13(EAN): 9780387943879
Издательство: Springer
Рейтинг:
Цена: 12012.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Exploring the use of techniques drawn from probability research to tackle problems in mathematical analysis, this study includes discussion of the construction of the Martin boundary, Dahlberg`s Theorem, probabilistic proofs of the boundary Harnack principle, and much more.

Decision Processes in Dynamic Probabilistic Systems

Автор: A.V. Gheorghe
Название: Decision Processes in Dynamic Probabilistic Systems
ISBN: 0792305442 ISBN-13(EAN): 9780792305446
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 'Et moi -...- si j'avait su comment en revenir. One service mathematics has rendered the je n'y serais point aile: human race. It has put common sense back where it belongs. on the topmost shelf next Jules Verne (0 the dusty canister labelled 'discarded non- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com- puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

Decision Processes in Dynamic Probabilistic Systems

Автор: A.V. Gheorghe
Название: Decision Processes in Dynamic Probabilistic Systems
ISBN: 9401067082 ISBN-13(EAN): 9789401067089
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Probabilistic prognostics and health management of energy systems.

Название: Probabilistic prognostics and health management of energy systems.
ISBN: 331955851X ISBN-13(EAN): 9783319558516
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes the formulation of an efficient methodology that estimates energy system uncertainty and predicts Remaining Useful Life (RUL) accurately with significantly reduced RUL prediction uncertainty.

Formal Methods for Real-Time and Probabilistic Systems

Автор: Jost-Pieter Katoen
Название: Formal Methods for Real-Time and Probabilistic Systems
ISBN: 3540660100 ISBN-13(EAN): 9783540660101
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Selected papers and invited contributions from the 5th International AMAST Workshop on Formal Methods for Real Time and Probabilistic Systems. Topics covered include verification and model checking for probabilistic systems, semantics of probabilistic process calculi and stochastic process algebra.

Probabilistic Models of Population Evolution

Автор: Pardoux
Название: Probabilistic Models of Population Evolution
ISBN: 3319303260 ISBN-13(EAN): 9783319303260
Издательство: Springer
Рейтинг:
Цена: 4611.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such a population is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications.

?tienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, stochastic partial differential equations, and probabilistic models in evolutionary biology and population genetics. He obtained his PhD in 1975 at University of Paris-Sud.

ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия