Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Dynamical Systems IX, D.V. Anosov; D.V. Anosov; G.G. Gould; S.K. Aranson


Варианты приобретения
Цена: 19564.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: D.V. Anosov; D.V. Anosov; G.G. Gould; S.K. Aranson
Название:  Dynamical Systems IX
ISBN: 9783642081682
Издательство: Springer
Классификация:








ISBN-10: 3642081681
Обложка/Формат: Paperback
Страницы: 236
Вес: 0.35 кг.
Дата издания: 05.12.2010
Серия: Encyclopaedia of Mathematical Sciences
Язык: English
Размер: 234 x 156 x 13
Основная тема: Mathematics
Подзаголовок: Dynamical Systems with Hyperbolic Behaviour
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This volume is devoted to the hyperbolic theory of dynamical systems (DS), that is, the theory of smooth DS`s with hyperbolic behaviour of the tra- jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less significant subsets in the phase space.


Attractors for infinite-dimensional non-autonomous dynamical systems

Автор: Carvalho
Название: Attractors for infinite-dimensional non-autonomous dynamical systems
ISBN: 1461445809 ISBN-13(EAN): 9781461445807
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Автор: Guckenheimer John, Holmes Philip
Название: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
ISBN: 0387908196 ISBN-13(EAN): 9780387908199
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: From the reviews: "This book is concerned with the application of methods from dynamical systems and bifurcation theories to the study of nonlinear oscillations. Chapter 1 provides a review of basic results in the theory of dynamical systems, covering both ordinary differential equations and discrete mappings. Chapter 2 presents 4 examples from nonlinear oscillations. Chapter 3 contains a discussion of the methods of local bifurcation theory for flows and maps, including center manifolds and normal forms. Chapter 4 develops analytical methods of averaging and perturbation theory. Close analysis of geometrically defined two-dimensional maps with complicated invariant sets is discussed in chapter 5. Chapter 6 covers global homoclinic and heteroclinic bifurcations. The final chapter shows how the global bifurcations reappear in degenerate local bifurcations and ends with several more models of physical problems which display these behaviors." #Book Review - Engineering Societies Library, New York#1 "An attempt to make research tools concerning `strange attractors' developed in the last 20 years available to applied scientists and to make clear to research mathematicians the needs in applied works. Emphasis on geometric and topological solutions of differential equations. Applications mainly drawn from nonlinear oscillations." #American Mathematical Monthly#2

Modelling of Simplified Dynamical Systems

Автор: Edward Layer
Название: Modelling of Simplified Dynamical Systems
ISBN: 3642628567 ISBN-13(EAN): 9783642628566
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Problems involving synthesis of mathematical models of various physical systems, making use of these models in practice and verifying them qualitatively has - come an especially important area of research since more and more physical - periments are being replaced by computer simulations.

Dynamical Systems I

Автор: D.V. Anosov; D.V. Anosov; E.R. Dawson; D. OShea; V
Название: Dynamical Systems I
ISBN: 3540170006 ISBN-13(EAN): 9783540170006
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Der erste Beitrag in diesem Band uber gewohnliche Differentialgleichungen von Arnol`d und Il`yashenko ist ein Meisterwerk der mathematischen Literatur. Er wird durch einen zweiten Beitrag uber glatte dynamische Systeme erganzt. Nicht nur Forscher sondern auch Studenten werden dieses Buch ausserst nutzlich finden.

Averaging Methods in Nonlinear Dynamical Systems

Автор: Sanders J. A., Verhulst F., Murdock J.
Название: Averaging Methods in Nonlinear Dynamical Systems
ISBN: 0387489169 ISBN-13(EAN): 9780387489162
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Perturbation theory and in particular normal form theory has shown strong growth during the last decades. So it is not surprising that the authors have presented an extensive revision of the first edition of the Averaging Methods in Nonlinear Dynamical Systems book. There are many changes, corrections and updates in chapters on Basic Material and Asymptotics, Averaging, and Attraction. Chapters on Periodic Averaging and Hyperbolicity, Classical (first level) Normal Form Theory, Nilpotent (classical) Normal Form, and Higher Level Normal Form Theory are entirely new and represent new insights in averaging, in particular its relation with dynamical systems and the theory of normal forms. Also new are surveys on invariant manifolds in Appendix C and averaging for PDEs in Appendix E. Since the first edition, the book has expanded in length and the third author, James Murdock has been added.Review of First Edition"One of the most striking features of the book is the nice collection of examples, which range from the very simple to some that are elaborate, realistic, and of considerable practical importance. Most of them are presented in careful detail and are illustrated with profuse, illuminating diagrams." - Mathematical Reviews

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Автор: Wiggins
Название: Introduction to Applied Nonlinear Dynamical Systems and Chaos
ISBN: 0387001778 ISBN-13(EAN): 9780387001777
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume is intended for advanced undergraduate or first-year graduate students as an introduction to applied nonlinear dynamics and chaos. The author has placed emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about the behavior of these systems. He has included the basic core material that is necessary for higher levels of study and research. Thus, people who do not necessarily have an extensive mathematical background, such as students in engineering, physics, chemistry, and biology, will find this text as useful as students of mathematics. This new edition contains extensive new material on invariant manifold theory and normal forms (in particular, Hamiltonian normal forms and the role of symmetry). Lagrangian, Hamiltonian, gradient, and reversible dynamical systems are also discussed. Elementary Hamiltonian bifurcations are covered, as well as the basic properties of circle maps. The book contains an extensive bibliography as well as a detailed glossary of terms, making it a comprehensive book on applied nonlinear dynamical systems from a geometrical and analytical point of view.

Dynamical Systems of Algebraic Origin

Автор: Klaus Schmidt
Название: Dynamical Systems of Algebraic Origin
ISBN: 3034899572 ISBN-13(EAN): 9783034899574
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Hybrid Dynamical Systems

Автор: Mohamed Djemai; Michael Defoort
Название: Hybrid Dynamical Systems
ISBN: 3319107941 ISBN-13(EAN): 9783319107943
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systems - systems involving both continuous dynamics and discrete events - as described by the work of several well-known groups of researchers.

Integrability of Dynamical Systems: Algebra and Analysis

Автор: Xiang Zhang
Название: Integrability of Dynamical Systems: Algebra and Analysis
ISBN: 981104225X ISBN-13(EAN): 9789811042256
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications.

Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds

Автор: A.K. Prykarpatsky; I.V. Mykytiuk
Название: Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds
ISBN: 0792350901 ISBN-13(EAN): 9780792350903
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Provides a detailed exposition of modern Lie-algebraic theory of integrable nonlinear dynamic systems on manifolds and its applications to mathematical physics, classical mechanics and hydrodynamics. This book offers solutions to many quantization procedure problems. It is for graduate-level students, researchers and mathematical physicists.

From Finite to Infinite Dimensional Dynamical Systems

Автор: James Robinson; Paul A. Glendinning
Название: From Finite to Infinite Dimensional Dynamical Systems
ISBN: 0792369769 ISBN-13(EAN): 9780792369769
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 21 August-1 September 1995

Nonautonomous Dynamical Systems in the Life Sciences

Автор: Kloeden Peter E.
Название: Nonautonomous Dynamical Systems in the Life Sciences
ISBN: 3319030795 ISBN-13(EAN): 9783319030791
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия