Complete Minimal Surfaces of Finite Total Curvature, Kichoon Yang
Автор: Chen Bang-Yen Название: Total Mean Curvature and Submanifolds of Finite Type: 2nd Edition ISBN: 9814616699 ISBN-13(EAN): 9789814616690 Издательство: World Scientific Publishing Рейтинг: Цена: 7128.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: During the last four decades, there were numerous important developments on total mean curvature and the theory of finite type submanifolds.
Описание: A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds.
Описание: Suitable for students and specialists in the area of analog and mixed-signal CMOS VLSI design, this book focuses on analysis and design of voltage reference circuits. It intends to evaluate the possibilities of improving the thermal behavior of voltage references by implementing superior-order curvature-correction techniques.
Автор: Kichoon Yang Название: Complete Minimal Surfaces of Finite Total Curvature ISBN: 0792330129 ISBN-13(EAN): 9780792330127 Издательство: Springer Рейтинг: Цена: 10760.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Based on the idea that the study of complete minimal surfaces in R3 of finite total curvature amounts to the study of linear series on algebraic curves, this book offers an account of the Puncture Number Problem, which seeks to determine the possible underlying conformal structures for immersed complete minimal surfaces of finite total curvature.
Автор: Chen Bang-Yen Название: Total Mean Curvature And Submanifolds Of Finite Type (2Nd Edition) ISBN: 9814616680 ISBN-13(EAN): 9789814616683 Издательство: World Scientific Publishing Рейтинг: Цена: 14414.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: During the last four decades, there were numerous important developments on total mean curvature and the theory of finite type submanifolds.
Автор: Rafael L?pez Название: Constant Mean Curvature Surfaces with Boundary ISBN: 3662512564 ISBN-13(EAN): 9783662512562 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields.
While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of "compact surfaces with boundaries," narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs.
The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems.
Автор: Rafael L?pez Название: Constant Mean Curvature Surfaces with Boundary ISBN: 3642396259 ISBN-13(EAN): 9783642396250 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields.
While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of "compact surfaces with boundaries," narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs.
The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems.
Автор: Kichoon Yang Название: Complete and Compact Minimal Surfaces ISBN: 0792303997 ISBN-13(EAN): 9780792303992 Издательство: Springer Рейтинг: Цена: 10760.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 'Et moi, ..., si j'avait su comment en reveni.r, One service mathematics has rendered the je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non- 111e series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com- puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Автор: Kichoon Yang Название: Complete and Compact Minimal Surfaces ISBN: 9401069476 ISBN-13(EAN): 9789401069472 Издательство: Springer Рейтинг: Цена: 10760.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Boris Hasselblatt Название: Ergodic Theory and Negative Curvature ISBN: 3319430580 ISBN-13(EAN): 9783319430584 Издательство: Springer Рейтинг: Цена: 9083.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Focussing on the mathematics related to the recent proof of ergodicity of the (Weil-Petersson) geodesic flow on a nonpositively curved space whose points are negatively curved metrics on surfaces, this book provides a broad introduction to an important current area of research.
Автор: Katsuhiro Shiohama; Takashi Sakai; Toshikazu Sunad Название: Curvature and Topology of Riemannian Manifolds ISBN: 3540167706 ISBN-13(EAN): 9783540167709 Издательство: Springer Рейтинг: Цена: 5583.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Carlo Mantegazza Название: Lecture Notes on Mean Curvature Flow ISBN: 3034803400 ISBN-13(EAN): 9783034803403 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This introduction to the subject of mean curvature flow of hypersurfaces has a special emphasis on the analysis of singularities and provides a detailed discussion of the classical parametric approach mainly developed by R. Hamilton and G. Huisken.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru