Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, Timothy J. Barth; Herman Deconinck
Автор: E. Gekeler Название: Discretization Methods for Stable Initial Value Problems ISBN: 3540128808 ISBN-13(EAN): 9783540128809 Издательство: Springer Рейтинг: Цена: 6288.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: H.A. Mang; F.G. Rammerstorfer Название: IUTAM Symposium on Discretization Methods in Structural Mechanics ISBN: 940105942X ISBN-13(EAN): 9789401059428 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Proceedings of the IUTAM Symposium held in Vienna, Austria, 2-6 June 1997
Автор: Wang Zhi Jian Название: Adaptive High-Order Methods In Computational Fluid Dynamics ISBN: 9814313181 ISBN-13(EAN): 9789814313186 Издательство: World Scientific Publishing Рейтинг: Цена: 23760.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Consists of important contributions by world-renowned experts on adaptive high-order methods in computational fluid dynamics (CFD). This book covers several widely used, and intensively researched methods, including the discontinuous Galerkin, differential quadrature, residual distribution, spectral volume, and spectral difference.
Автор: Ventura Название: Advances in Discretization Methods ISBN: 3319412450 ISBN-13(EAN): 9783319412450 Издательство: Springer Рейтинг: Цена: 20896.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book gathers selected contributions on emerging research work presented at the International Conference eXtended Discretization MethodS (X-DMS), held in Ferrara in September 2015. It highlights the most relevant advances made at the international level in the context of expanding classical discretization methods, like finite elements, to the numerical analysis of a variety of physical problems. The improvements are intended to achieve higher computational efficiency and to account for special features of the solution directly in the approximation space and/or in the discretization procedure. The methods described include, among others, partition of unity methods (meshfree, XFEM, GFEM), virtual element methods, fictitious domain methods, and special techniques for static and evolving interfaces. The uniting feature of all contributions is the direct link between computational methodologies and their application to different engineering areas.
Автор: G?nther Kuhn; Herbert Mang Название: Discretization Methods in Structural Mechanics ISBN: 3642493750 ISBN-13(EAN): 9783642493751 Издательство: Springer Рейтинг: Цена: 16979.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Several discussions of this situation in the Committee for Discretization Methods ill Solid Mechanics of the Society for Applied Mathematics and Mechanics (GAMM) resulted in the plan to submit a proposal to the General Assembly of the International Union of Theoretical and Applied Mechanics (IUTAM) to sponsor a pertinent IUTAM Symposium.
Описание: Domain decomposition methods provide powerful and flexible tools for the numerical approximation of partial differential equations arising in the modeling of many interesting applications in science and engineering.
Автор: Alain Combescure; Ren?, de Borst; Ted Belytschko Название: IUTAM Symposium on Discretization Methods for Evolving Discontinuities ISBN: 904817659X ISBN-13(EAN): 9789048176595 Издательство: Springer Рейтинг: Цена: 18860.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In recent years, discretization methods have been proposed which are more flexible and which have the potential of capturing (moving) discontinuities in a robust and efficient manner. It provides the most comprehensive coverage of state-of-the art numerical methods for treating discontinuities in mechanics.
Domain decomposition (DD) methods provide powerful tools for constructing parallel numerical solution algorithms for large scale systems of algebraic equations arising from the discretization of partial differential equations. These methods are well-established and belong to a fast developing area. In this volume, the reader will find a brief historical overview, the basic results of the general theory of domain and space decomposition methods as well as the description and analysis of practical DD algorithms for parallel computing. It is typical to find in this volume that most of the presented DD solvers belong to the family of fast algorithms, where each component is efficient with respect to the arithmetical work. Readers will discover new analysis results for both the well-known basic DD solvers and some DD methods recently devised by the authors, e.g., for elliptic problems with varying chaotically piecewise constant orthotropism without restrictions on the finite aspect ratios.
The hp finite element discretizations, in particular, by spectral elements of elliptic equations are given significant attention in current research and applications. This volume is the first to feature all components of Dirichlet-Dirichlet-type DD solvers for hp discretizations devised as numerical procedures which result in DD solvers that are almost optimal with respect to the computational work. The most important DD solvers are presented in the matrix/vector form algorithms that are convenient for practical use.