Global Optimization in Engineering Design, Ignacio E. Grossmann
Автор: Sundaram, Rangarajan K. Название: A First Course in Optimization Theory ISBN: 0521497701 ISBN-13(EAN): 9780521497701 Издательство: Cambridge Academ Рейтинг: Цена: 6811.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book, first published in 1996, introduces students to optimization theory and its use in economics and allied disciplines.
Автор: Beyer Betsy, Jones Chris, Petoff Jennifer Название: Site Reliability Engineering: How Google Runs Production Systems ISBN: 149192912X ISBN-13(EAN): 9781491929124 Издательство: Wiley Рейтинг: Цена: 7602.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In this collection of essays and articles, key members of Google`s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world.
Автор: Mccabe Название: Unit operations of chemical engineering ISBN: 0071247106 ISBN-13(EAN): 9780071247108 Издательство: McGraw-Hill Рейтинг: Цена: 10123.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Includes separate chapters that are devoted to each of the principle unit operations, grouped into 4 sections: fluid mechanics, heat transfer, mass transfer and equilibrium stages, and operations involving particulate solids. This book contains its balanced treatment of theory and engineering practice, with many practical, illustrative examples.
Автор: Zhu, Ji-Hong Название: Topology Optimization in Engineering Structure Design ISBN: 1785482246 ISBN-13(EAN): 9781785482243 Издательство: Elsevier Science Рейтинг: Цена: 17517.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Topology Optimization in Engineering Structure Design explores the recent advances and applications of topology optimization in engineering structures design, with a particular focus on aircraft and aerospace structural systems. To meet the increasingly complex engineering challenges provided by rapid developments in these industries, structural optimization techniques have developed in conjunction with them over the past two decades. The latest methods and theories to improve mechanical performances and save structural weight under static, dynamic and thermal loads are summarized and explained in detail here, in addition to potential applications of topology optimization techniques such as shape preserving design, smart structure design and additive manufacturing. These new design strategies are illustrated by a host of worked examples, which are inspired by real engineering situations, some of which have been applied to practical structure design with significant effects. Written from a forward-looking applied engineering perspective, the authors not only summarize the latest developments in this field of structure design but also provide both theoretical knowledge and a practical guideline. This book should appeal to graduate students, researchers and engineers, in detailing how to use topology optimization methods to improve product design.
Автор: Ignacio E. Grossmann Название: Global Optimization in Engineering Design ISBN: 0792338812 ISBN-13(EAN): 9780792338819 Издательство: Springer Рейтинг: Цена: 30606.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents some of the techniques and applications of deterministic approaches to global optimization. The first six chapters of this book deal with applications in the planning of process networks, stochastic scheduling, heat exchanger networks, layout design, truss design, multiproduct batch plants, and water distribution systems.
Preface.- Part 1: Theoretical and Numerical Methods and Tools for Optimization.- 1.1 Theoretical Methods and Tools.- 1.1.1 Multi-Objective Evolutionary Algorithms in Real-World Applications: Some Recent Results and Current Challenges, by Carlos A. Coello Coello.- 1.1.2 Hybrid Optimization Algorithms and Hybrid Response Surfaces, by George S. Dulikravich and Marcelo J. Colaco.- 1.1.3 A genetic algorithm for a sensor device location problem, by Egidio D'Amato, Elia Daniele and Lina Mallozzi.- 1.1.4 The Role of Artificial Neural Networks in Evolutionary Optimization: A Review, by Mustapha Maarouf, Adriel Sosa, Blas Galvбn, David Greiner, Gabriel Winter, Mбximo Mendez and Ricardo Aguasca.- 1.1.5 Reliability-based Design Optimization with the Generalized Inverse Distribution Function, by Domenico Quagliarella, Giovanni Petrone and Gianluca Iaccarino.- 1.2 Numerical Methods and Tools.- 1.2.1 On the choice of surrogates for multilevel aircraft performance models, by Manon Bondouy, Sophie Jan, Serge Laporte and Christian Bes.- 1.2.2 Multi-objective design optimization using high-order statistics for CFD applications, by Pietro M. Congedo, Gianluca Geraci, Remi Abgrall and Gianluca Iaccarino.- 1.2.3 Extension of the One-Shot Method for Optimal Control with Unsteady PDEs, by Stefanie Gunther, Nicolas R. Gauger and Qiqi Wang.- 1.2.4 Adaptive Aerodynamic Design Optimization for Navier-Stokes using Shape Derivatives with Discontinuous Galerkin Methods, by Lena Kaland, Matthias Sonntag and Nicolas R. Gauger.- 1.2.5 Optimal Flow Control and Topology Optimization Using the Continuous Adjoint Method in Unsteady Flows, by Ioannis S. Kavvadias, George K. Karpouzas, Evangelos M. Paoutsis-Kiachagias, Dimitris I. Papadimitrou and Kyriakos C. Giannakoglou.- Part 2: Engineering Design and Societal Applications.- 2.1 Turbomachinery.- 2.1.1 Design optimization of the Primary Pump of a Nuclear Reactor, by Tom Verstraete and Lasse Mueller.- 2.1.2 Direct 3D Aerodynamic Optimization of Turbine Blades with GPU-accelerated CFD, by Philipp Amtsfeld, Dieter Bestle and Marcus Meyer.- 2.1.3 Evaluation of Surrogate Modelling Methods for Turbo-Machinery Component Design Optimization, by Gianluca Badjan, Carlo Poloni, Andrew Pike and Nadir Ince.- 2.1.4 Robust Aerodynamic Design Optimization of Horizontal Axis Wind Turbine Rotors, by Marco Caboni, Edmondo Minisci and Michele Sergio Campobaso.- 2.1.5 Horizontal axis hydroturbine shroud airfoil optimization, by Elia Daniele, Elios Ferrauto and Domenico P. Coiro.- 2.1.6 Parametric Blending and FE-Optimization of a Compressor Blisk Test Case, by Kai Karger and Dieter Bestle.- 2.1.7 Modular Automated Aerodynamic Compressor Design Process, by Fiete Poehlmann, Dieter Bestle, Peter Flassig and Michиl Hinz.- 2.1.8 Design-Optimization of a Compressor Blading on a GPU Cluster, by Konstantinos T. Tsiakas, Xenofon S. Trompoukis, Varvara G. Asouti and Kyriakos C. Giannakoglou.- 2.2 Structures, Materials and Civil Engineering.- 2.2.1 Immune and Swarm Optimization of Structures, by Tadeusz Burczyński, Arkadiusz Poteralski and Miroslaw Szczepanik.- 2.2.2 Investigation of three genotypes for mixed variable evolutionary optimization, by Rajan Filomeno Coelho, Manyu Xiao, Aurore Guglielmetti, Manuel Herrera and Weihong Zhang.- 2.2.3 A Study of Nash-Evolutionary Algorithms for Reconstruction Inverse Problems in Structural Engineering, by David Greiner, Jacques Pйriaux, Josй Marнa Emperador, Blas Galvбn and Gabriel Winter.- 2.2.4 A comparative study on design optimization of polygonal and Bйzier curve-shaped thin noise barriers using dual BEMformulation, by Rayco Toledo, Juan J. Aznбrez, Orlando Maeso and David Greiner.- 2.2.5 A Discrete Adjoint Approach For Trailing-Edge Noise Minimization using Porous Material, by Beckett Y. Zhou, Nicolas R. Gauger, Seong R. Koh and Wolfgang Schrцder.- 2.3 Aeronautics and Astronautics.- 2.3.1 Conceptual Design of Single-Stage Launch Vehicle with Hybrid Rocket Engine Using Desi
Preface.- Part 1: Theoretical and Numerical Methods and Tools for Optimization.- 1.1 Theoretical Methods and Tools.- 1.1.1 Multi-Objective Evolutionary Algorithms in Real-World Applications: Some Recent Results and Current Challenges, by Carlos A. Coello Coello.- 1.1.2 Hybrid Optimization Algorithms and Hybrid Response Surfaces, by George S. Dulikravich and Marcelo J. Colaco.- 1.1.3 A genetic algorithm for a sensor device location problem, by Egidio D'Amato, Elia Daniele and Lina Mallozzi.- 1.1.4 The Role of Artificial Neural Networks in Evolutionary Optimization: A Review, by Mustapha Maarouf, Adriel Sosa, Blas Galvбn, David Greiner, Gabriel Winter, Mбximo Mendez and Ricardo Aguasca.- 1.1.5 Reliability-based Design Optimization with the Generalized Inverse Distribution Function, by Domenico Quagliarella, Giovanni Petrone and Gianluca Iaccarino.- 1.2 Numerical Methods and Tools.- 1.2.1 On the choice of surrogates for multilevel aircraft performance models, by Manon Bondouy, Sophie Jan, Serge Laporte and Christian Bes.- 1.2.2 Multi-objective design optimization using high-order statistics for CFD applications, by Pietro M. Congedo, Gianluca Geraci, Remi Abgrall and Gianluca Iaccarino.- 1.2.3 Extension of the One-Shot Method for Optimal Control with Unsteady PDEs, by Stefanie Gunther, Nicolas R. Gauger and Qiqi Wang.- 1.2.4 Adaptive Aerodynamic Design Optimization for Navier-Stokes using Shape Derivatives with Discontinuous Galerkin Methods, by Lena Kaland, Matthias Sonntag and Nicolas R. Gauger.- 1.2.5 Optimal Flow Control and Topology Optimization Using the Continuous Adjoint Method in Unsteady Flows, by Ioannis S. Kavvadias, George K. Karpouzas, Evangelos M. Paoutsis-Kiachagias, Dimitris I. Papadimitrou and Kyriakos C. Giannakoglou.- Part 2: Engineering Design and Societal Applications.- 2.1 Turbomachinery.- 2.1.1 Design optimization of the Primary Pump of a Nuclear Reactor, by Tom Verstraete and Lasse Mueller.- 2.1.2 Direct 3D Aerodynamic Optimization of Turbine Blades with GPU-accelerated CFD, by Philipp Amtsfeld, Dieter Bestle and Marcus Meyer.- 2.1.3 Evaluation of Surrogate Modelling Methods for Turbo-Machinery Component Design Optimization, by Gianluca Badjan, Carlo Poloni, Andrew Pike and Nadir Ince.- 2.1.4 Robust Aerodynamic Design Optimization of Horizontal Axis Wind Turbine Rotors, by Marco Caboni, Edmondo Minisci and Michele Sergio Campobaso.- 2.1.5 Horizontal axis hydroturbine shroud airfoil optimization, by Elia Daniele, Elios Ferrauto and Domenico P. Coiro.- 2.1.6 Parametric Blending and FE-Optimization of a Compressor Blisk Test Case, by Kai Karger and Dieter Bestle.- 2.1.7 Modular Automated Aerodynamic Compressor Design Process, by Fiete Poehlmann, Dieter Bestle, Peter Flassig and Michиl Hinz.- 2.1.8 Design-Optimization of a Compressor Blading on a GPU Cluster, by Konstantinos T. Tsiakas, Xenofon S. Trompoukis, Varvara G. Asouti and Kyriakos C. Giannakoglou.- 2.2 Structures, Materials and Civil Engineering.- 2.2.1 Immune and Swarm Optimization of Structures, by Tadeusz Burczyński, Arkadiusz Poteralski and Miroslaw Szczepanik.- 2.2.2 Investigation of three genotypes for mixed variable evolutionary optimization, by Rajan Filomeno Coelho, Manyu Xiao, Aurore Guglielmetti, Manuel Herrera and Weihong Zhang.- 2.2.3 A Study of Nash-Evolutionary Algorithms for Reconstruction Inverse Problems in Structural Engineering, by David Greiner, Jacques Pйriaux, Josй Marнa Emperador, Blas Galvбn and Gabriel Winter.- 2.2.4 A comparative study on design optimization of polygonal and Bйzier curve-shaped thin noise barriers using dual BEMformulation, by Rayco Toledo, Juan J. Aznбrez, Orlando Maeso and David Greiner.- 2.2.5 A Discrete Adjoint Approach For Trailing-Edge Noise Minimization using Porous Material, by Beckett Y. Zhou, Nicolas R. Gauger, Seong R. Koh and Wolfgang Schrцder.- 2.3 Aeronautics and Astronautics.- 2.3.1 Conceptual Design of Single-Stage Launch Vehicle with Hybrid Rocket Engine Using Desi
Описание: Fast aerodynamic coefficients prediction using support vector machines for global shape optimization.- Adaptive sampling strategies for surrogate-based aerodynamic optimization.- PCA-enhanced metamodel-assisted evolutionary algorithms for aerodynamic optimization.- Multi-objective surrogate based optimization of gas cyclones using support vector machines and CFD simulations.