Statistical Mining and Data Visualization in Atmospheric Sciences, Timothy J. Brown; Paul W. Mielke Jr.
Автор: Malley Название: Statistical Learning for Biomedical Data ISBN: 0521699096 ISBN-13(EAN): 9780521699099 Издательство: Cambridge Academ Рейтинг: Цена: 6494.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontechnical language, using many examples and figures, and connects these new methods to familiar techniques.
Автор: Kohler Название: Data Analysis Using Stata, Third Edition ISBN: 1597181102 ISBN-13(EAN): 9781597181105 Издательство: Taylor&Francis Рейтинг: Цена: 11176.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Data Analysis Using Stata, Third Edition is a comprehensive introduction to both statistical methods and Stata. Beginners will learn the logic of data analysis and interpretation and easily become self-sufficient data analysts. Readers already familiar with Stata will find it an enjoyable resource for picking up new tips and tricks.
The book is written as a self-study tutorial and organized around examples. It interactively introduces statistical techniques such as data exploration, description, and regression techniques for continuous and binary dependent variables. Step by step, readers move through the entire process of data analysis and in doing so learn the principles of Stata, data manipulation, graphical representation, and programs to automate repetitive tasks. This third edition includes advanced topics, such as factor-variables notation, average marginal effects, standard errors in complex survey, and multiple imputation in a way, that beginners of both data analysis and Stata can understand.
Using data from a longitudinal study of private households, the authors provide examples from the social sciences that are relatable to researchers from all disciplines. The examples emphasize good statistical practice and reproducible research. Readers are encouraged to download the companion package of datasets to replicate the examples as they work through the book. Each chapter ends with exercises to consolidate acquired skills.
Автор: Ratner Bruce Название: Statistical and Machine-Learning Data Mining ISBN: 1439860912 ISBN-13(EAN): 9781439860915 Издательство: Taylor&Francis Рейтинг: Цена: 9033.00 р. Наличие на складе: Поставка под заказ.
Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.
A Hands-On Approach to Teaching Introductory Statistics
Expanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the mathematics underlying classical statistical analysis, the modeling aspects of statistical analysis and the biological interpretation of results, and the application of statistical software in analyzing real-world problems and datasets.
New to the Second Edition
A new chapter on non-linear regression models
A new chapter that contains examples of complete data analyses, illustrating how a full-fledged statistical analysis is undertaken
Additional exercises in most chapters
A summary of statistical formulas related to the specific designs used to teach the statistical concepts
This text provides a computational toolbox that enables students to analyze real datasets and gain the confidence and skills to undertake more sophisticated analyses. Although accessible with any statistical software, the text encourages a reliance on R. For those new to R, an introduction to the software is available in an appendix. The book also includes end-of-chapter exercises as well as an entire chapter of case exercises that help students apply their knowledge to larger datasets and learn more about approaches specific to the life sciences.
Автор: Mirman Название: Growth Curve Analysis and Visualization Using R ISBN: 1466584327 ISBN-13(EAN): 9781466584327 Издательство: Taylor&Francis Рейтинг: Цена: 13779.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Learn How to Use Growth Curve Analysis with Your Time Course Data An increasingly prominent statistical tool in the behavioral sciences, multilevel regression offers a statistical framework for analyzing longitudinal or time course data. It also provides a way to quantify and analyze individual differences, such as developmental and neuropsychological, in the context of a model of the overall group effects. To harness the practical aspects of this useful tool, behavioral science researchers need a concise, accessible resource that explains how to implement these analysis methods. Growth Curve Analysis and Visualization Using R provides a practical, easy-to-understand guide to carrying out multilevel regression/growth curve analysis (GCA) of time course or longitudinal data in the behavioral sciences, particularly cognitive science, cognitive neuroscience, and psychology. With a minimum of statistical theory and technical jargon, the author focuses on the concrete issue of applying GCA to behavioral science data and individual differences. The book begins with discussing problems encountered when analyzing time course data, how to visualize time course data using the ggplot2 package, and how to format data for GCA and plotting. It then presents a conceptual overview of GCA and the core analysis syntax using the lme4 package and demonstrates how to plot model fits. The book describes how to deal with change over time that is not linear, how to structure random effects, how GCA and regression use categorical predictors, and how to conduct multiple simultaneous comparisons among different levels of a factor. It also compares the advantages and disadvantages of approaches to implementing logistic and quasi-logistic GCA and discusses how to use GCA to analyze individual differences as both fixed and random effects. The final chapter presents the code for all of the key examples along with samples demonstrating how to report GCA results. Throughout the book, R code illustrates how to implement the analyses and generate the graphs. Each chapter ends with exercises to test your understanding. The example datasets, code for solutions to the exercises, and supplemental code and examples are available on the author’s website.
Автор: Alexander Gammerman; Vladimir Vovk; Harris Papadop Название: Statistical Learning and Data Sciences ISBN: 3319170902 ISBN-13(EAN): 9783319170909 Издательство: Springer Рейтинг: Цена: 8944.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the Third International Symposium on Statistical Learning and Data Sciences, SLDS 2015, held in Egham, Surrey, UK, April 2015.
Автор: Bon K. Sy; Arjun K. Gupta Название: Information-Statistical Data Mining ISBN: 1461347556 ISBN-13(EAN): 9781461347552 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Information-Statistical Data Mining: Warehouse Integration with Examples of Oracle Basics is written to introduce basic concepts, advanced research techniques, and practical solutions of data warehousing and data mining for hosting large data sets and EDA.
Incorporating the latest R packages as well as new case studies and applications, Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition covers the aspects of R most often used by statistical analysts. New users of R will find the book's simple approach easy to understand while more sophisticated users will appreciate the invaluable source of task-oriented information.
New to the Second Edition
The use of RStudio, which increases the productivity of R users and helps users avoid error-prone cut-and-paste workflows
New chapter of case studies illustrating examples of useful data management tasks, reading complex files, making and annotating maps, "scraping" data from the web, mining text files, and generating dynamic graphics
New chapter on special topics that describes key features, such as processing by group, and explores important areas of statistics, including Bayesian methods, propensity scores, and bootstrapping
New chapter on simulation that includes examples of data generated from complex models and distributions
A detailed discussion of the philosophy and use of the knitr and markdown packages for R
New packages that extend the functionality of R and facilitate sophisticated analyses
Reorganized and enhanced chapters on data input and output, data management, statistical and mathematical functions, programming, high-level graphics plots, and the customization of plots
Easily Find Your Desired Task
Conveniently organized by short, clear descriptive entries, this edition continues to show users how to easily perform an analytical task in R. Users can quickly find and implement the material they need through the extensive indexing, cross-referencing, and worked examples in the text. Datasets and code are available for download on a supplementary website.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru