Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Representations of Integers as Sums of Squares, E. Grosswald


Варианты приобретения
Цена: 14673.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: E. Grosswald
Название:  Representations of Integers as Sums of Squares
ISBN: 9781461385684
Издательство: Springer
Классификация:
ISBN-10: 1461385687
Обложка/Формат: Paperback
Страницы: 251
Вес: 0.38 кг.
Дата издания: 14.10.2011
Язык: English
Размер: 234 x 156 x 14
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии


Character Sums with Exponential Functions and their Applications

Автор: Sergei Konyagin , Igor Shparlinski
Название: Character Sums with Exponential Functions and their Applications
ISBN: 0521642639 ISBN-13(EAN): 9780521642637
Издательство: Cambridge Academ
Рейтинг:
Цена: 18216.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The theme of this book is the distribution of integer powers modulo a prime number. It provides numerous new links between number theory and computer science as well as other areas of mathematics. Applications include (but are not limited to) complexity theory, random number generation, cryptography, and coding theory.

Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions

Автор: Stephen C. Milne
Название: Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions
ISBN: 1441952136 ISBN-13(EAN): 9781441952134
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 years to Diophantus, and continues more recently with the works of Fermat, Euler, Lagrange, Jacobi, Glaisher, Ramanujan, Hardy, Mordell, Andrews, and others. Jacobi's elliptic function approach dates from his epic Fundamenta Nova of 1829. Here, the author employs his combinatorial/elliptic function methods to derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's (1829) 4 and 8 squares identities to 4n2 or 4n(n+1) squares, respectively, without using cusp forms such as those of Glaisher or Ramanujan for 16 and 24 squares. These results depend upon new expansions for powers of various products of classical theta functions. This is the first time that infinite families of non-trivial exact explicit formulas for sums of squares have been found.

The author derives his formulas by utilizing combinatorics to combine a variety of methods and observations from the theory of Jacobi elliptic functions, continued fractions, Hankel or Turanian determinants, Lie algebras, Schur functions, and multiple basic hypergeometric series related to the classical groups. His results (in Theorem 5.19) generalize to separate infinite families each of the 21 of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions in sections 40-42 of the Fundamental Nova. The author also uses a special case of his methods to give a derivation proof of the two Kac and Wakimoto (1994) conjectured identities concerning representations of a positive integer by sums of 4n2 or 4n(n+1) triangular numbers, respectively. These conjectures arose in the study of Lie algebras and have also recently been proved by Zagier using modular forms. George Andrews says in a preface of this book, This impressive work will undoubtedly spur others both in elliptic functions and in modular forms to build on these wonderful discoveries.'

Audience: This research monograph on sums of squares is distinguished by its diversity of methods and extensive bibliography. It contains both detailed proofs and numerous explicit examples of the theory. This readable work will appeal to both students and researchers in number theory, combinatorics, special functions, classical analysis, approximation theory, and mathematical physics.

Uniform Distribution of Sequences of Integers in Residue Classes

Автор: W. Narkiewicz
Название: Uniform Distribution of Sequences of Integers in Residue Classes
ISBN: 3540138722 ISBN-13(EAN): 9783540138723
Издательство: Springer
Рейтинг:
Цена: 3487.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Limits, Series, and Fractional Part Integrals

Автор: Ovidiu Furdui
Название: Limits, Series, and Fractional Part Integrals
ISBN: 1461467616 ISBN-13(EAN): 9781461467618
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers tools for solving problems specializing in three topics of mathematical analysis: limits, series and fractional part integrals. Includes a section of Quickies: problems which have had uexpectedly succinct solutions, as well as Open Problems.

Arithmetic Functions and Integer Products

Автор: P.D.T.A. Elliott
Название: Arithmetic Functions and Integer Products
ISBN: 1461385504 ISBN-13(EAN): 9781461385509
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func- tions by the introduction of ideas, methods and results from the theory of Probability.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия