Автор: Z. Semadeni Название: Schauder Bases in Banach Spaces of Continuous Functions ISBN: 3540114815 ISBN-13(EAN): 9783540114819 Издательство: Springer Рейтинг: Цена: 3487.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Ivan Singer Название: Bases in Banach Spaces I ISBN: 3642516351 ISBN-13(EAN): 9783642516351 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: K. Deimling Название: Ordinary Differential Equations in Banach Spaces ISBN: 3540082603 ISBN-13(EAN): 9783540082606 Издательство: Springer Рейтинг: Цена: 3487.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Anatole Beck Название: Probability in Banach Spaces ISBN: 3540077936 ISBN-13(EAN): 9783540077930 Издательство: Springer Рейтинг: Цена: 4884.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Oliver Caps Название: Evolution Equations in Scales of Banach Spaces ISBN: 3519003767 ISBN-13(EAN): 9783519003762 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book provides a new functional-analytic approach to evolution equations by considering the abstract Cauchy problem in a scale of Banach spaces. Conditions are proved characterizing well-posedness of the linear, time-dependent Cauchy problem in scales of Banach spaces and implying local existence, uniqueness, and regularity of solutions of the quasilinear Cauchy problem.
Автор: Michel Ledoux; Michel Talagrand Название: Probability in Banach Spaces ISBN: 364220211X ISBN-13(EAN): 9783642202117 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Based on recent developments, such as new isoperimetric inequalities and random process techniques, this book presents a thorough treatment of the main aspects of Probability in Banach spaces, and of some of their links to Geometry of Banach spaces.
Автор: C.B. Huijsmans; M.A. Kaashoek; W.A.J. Luxemburg; B Название: Operator Theory in Function Spaces and Banach Lattices ISBN: 3034898967 ISBN-13(EAN): 9783034898966 Издательство: Springer Рейтинг: Цена: 11173.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: It contains a selection of original research papers which cover a broad spectrum of topics about operators and semigroups of operators on Banach lattices, analysis in function spaces and integration theory.
Автор: Allison Название: People and Spaces in Roman Military Bases ISBN: 1107039363 ISBN-13(EAN): 9781107039360 Издательство: Cambridge Academ Рейтинг: Цена: 19800.00 р. Наличие на складе: Поставка под заказ.
Описание: Demonstrates that communities inside Roman military bases included a range of families and support personnel, and of non-combat activities, widely assumed to have been located in civilian settlements outside the walls. Spatial analyses of artefact distribution patterns present fresh perspectives on the socio-spatial organisation of these establishments.
Автор: Lindenstrauss Название: Classical Banach Spaces I and II ISBN: 3540606289 ISBN-13(EAN): 9783540606284 Издательство: Springer Рейтинг: Цена: 6981.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume in the series "Classics in Mathematics" deals with two types of Banach spaces - sequence spaces and function spaces.
Автор: J. Diestel Название: Sequences and Series in Banach Spaces ISBN: 1461297346 ISBN-13(EAN): 9781461297345 Издательство: Springer Рейтинг: Цена: 11173.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Probability limit theorems in infinite-dimensional spaces give conditions un- der which convergence holds uniformly over an infinite class of sets or functions. Early results in this direction were the Glivenko-Cantelli, Kolmogorov-Smirnov and Donsker theorems for empirical distribution functions. Already in these cases there is convergence in Banach spaces that are not only infinite-dimensional but nonsep- arable. But the theory in such spaces developed slowly until the late 1970's. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950's and developed strongly in the 1960's and 70's. We have in mind here also work on sample continuity and boundedness of Gaussian processes and random methods in harmonic analysis. By the mid-70's a substantial theory was in place, including sharp infinite-dimensional limit theorems under either metric entropy or geometric conditions. Then, modern empirical process theory began to develop, where the collection of half-lines in the line has been replaced by much more general collections of sets in and functions on multidimensional spaces. Many of the main ideas from probability in separable Banach spaces turned out to have one or more useful analogues for empirical processes. Tightness became "asymptotic equicontinuity. " Metric entropy remained useful but also was adapted to metric entropy with bracketing, random entropies, and Kolchinskii-Pollard entropy. Even norms themselves were in some situations replaced by measurable majorants, to which the well-developed separable theory then carried over straightforwardly.
Автор: Pisier Название: Martingales in Banach Spaces ISBN: 1107137241 ISBN-13(EAN): 9781107137240 Издательство: Cambridge Academ Рейтинг: Цена: 9979.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Martingales arise in many areas of probability theory. This book focuses on their applications to the geometry of Banach spaces and discusses the interplay of Banach space valued martingales with various other areas of analysis. It is accessible to graduates with a basic knowledge of real and complex analysis.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru