Описание: Reflecting the significant developments of the past decade, this textbook explains key physical methods in modern biology. Each method is illustrated through real-world examples, alongside background information designed for both physicists and biologists, making this an ideal resource for students in biophysics at science and medical schools.
Автор: Birgit Jacob; Hans J. Zwart Название: Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces ISBN: 3034808119 ISBN-13(EAN): 9783034808118 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems.
Описание: This book reports on recent achievements in stability and feedback stabilization of infinite systems. Various control methods such as sensor feedback control and dynamic boundary control are applied to stabilize the equations. Many new theorems and methods are included in the book.
Автор: James Robinson; Paul A. Glendinning Название: From Finite to Infinite Dimensional Dynamical Systems ISBN: 0792369769 ISBN-13(EAN): 9780792369769 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 21 August-1 September 1995
Автор: Michael I. Gil` Название: Stability of Finite and Infinite Dimensional Systems ISBN: 0792382218 ISBN-13(EAN): 9780792382218 Издательство: Springer Рейтинг: Цена: 29209.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Offers a systematic exposition of the approach to stability analysis based on estimates for matrix-valued and operator-valued functions. This book helps us to investigate various classes of finite and infinite dimensional systems from a unified viewpoint. It is intended for specialists in stability theory.
Автор: Ciprian Foias; Hitay ?zbay; Allen Tannenbaum Название: Robust Control of Infinite Dimensional Systems ISBN: 3540199942 ISBN-13(EAN): 9783540199946 Издательство: Springer Рейтинг: Цена: 14365.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Since its inception, H( optimization theory has become the control methodology of choice in robust feedback analysis and design. This monograph presents an operator theoretic approach to the H( control for disturbed parameter systems, that is, systems which admit infinite dimensional state spaces.
Автор: Alexandre Carvalho; Jos? A. Langa; James Robinson Название: Attractors for infinite-dimensional non-autonomous dynamical systems ISBN: 148999176X ISBN-13(EAN): 9781489991768 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This treatment of pull-back attractors for non-autonomous Dynamical systems emphasizes the infinite-dimensional variety but also analyzes those that are finite. As a graduate primer, it covers everything from basic definitions to cutting-edge results.
Автор: Michael I. Gil` Название: Stability of Finite and Infinite Dimensional Systems ISBN: 1461375509 ISBN-13(EAN): 9781461375500 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations.
Автор: R.F. Curtain; A.J. Pritchard Название: Infinite Dimensional Linear Systems Theory ISBN: 3540089616 ISBN-13(EAN): 9783540089612 Издательство: Springer Рейтинг: Цена: 12157.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Sergej B. Kuksin Название: Nearly Integrable Infinite-Dimensional Hamiltonian Systems ISBN: 3540571612 ISBN-13(EAN): 9783540571612 Издательство: Springer Рейтинг: Цена: 3492.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph is devoted to partial differential equations (PDEs) of Hamiltonian form. For each equation, a KAM-like theorem is proved, and then applied to classical nonlinear PDEs with one-dimensional space variables, such as the nonlinear string and nonlinear Schroedinger equations.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru