Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

The Cauchy-Riemann Complex, Ingo Lieb; Joachim Michel


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Ingo Lieb; Joachim Michel
Название:  The Cauchy-Riemann Complex
ISBN: 9783322916105
Издательство: Springer
Классификация:

ISBN-10: 3322916103
Обложка/Формат: Paperback
Страницы: 362
Вес: 0.60 кг.
Дата издания: 27.07.2012
Серия: Aspects of Mathematics
Язык: English
Размер: 244 x 170 x 19
Основная тема: Mathematics
Подзаголовок: Integral Formulae and Neumann Problem
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book presents complex analysis of several variables from the point of view of the Cauchy-Riemann equations and integral representations. A more detailed description of our methods and main results can be found in the introduction. Here we only make some remarks on our aims and on the required background knowledge. Integral representation methods serve a twofold purpose: 1 they yield regularity results not easily obtained by other methods and 2 , along the way, they lead to a fairly simple development of parts of the classical theory of several complex variables. We try to reach both aims. Thus, the first three to four chapters, if complemented by an elementary chapter on holomorphic functions, can be used by a lecturer as an introductory course to com- plex analysis. They contain standard applications of the Bochner-Martinelli-Koppelman integral representation, a complete presentation of Cauchy-Fantappie forms giving also the numerical constants of the theory, and a direct study of the Cauchy-Riemann com- plex on strictly pseudoconvex domains leading, among other things, to a rather elementary solution of Levis problem in complex number space en. Chapter IV carries the theory from domains in en to strictly pseudoconvex subdomains of arbitrary - not necessarily Stein - manifolds. We develop this theory taking as a model classical Hodge theory on compact Riemannian manifolds; the relation between a parametrix for the real Laplacian and the generalised Bochner-Martinelli-Koppelman formula is crucial for the success of the method.


Computational Approach to Riemann Surfaces

Автор: Bobenko
Название: Computational Approach to Riemann Surfaces
ISBN: 3642174124 ISBN-13(EAN): 9783642174124
Издательство: Springer
Рейтинг:
Цена: 6282.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.

Spectral Theory of the Riemann Zeta-Function

Автор: Motohashi
Название: Spectral Theory of the Riemann Zeta-Function
ISBN: 0521058074 ISBN-13(EAN): 9780521058070
Издательство: Cambridge Academ
Рейтинг:
Цена: 8554.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Professor Motohashi shows that the Riemann zeta function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the function itself.

Geometry of Cauchy-Riemann Submanifolds

Автор: Dragomir
Название: Geometry of Cauchy-Riemann Submanifolds
ISBN: 9811009155 ISBN-13(EAN): 9789811009150
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book gathers contributions by respected experts on the theory of isometric immersions between Riemannian manifolds, and focuses on the geometry of CR structures on submanifolds in Hermitian manifolds. CR structures are a bundle theoretic recast of the tangential Cauchy–Riemann equations in complex analysis involving several complex variables. The book covers a wide range of topics such as Sasakian geometry, Kaehler and locally conformal Kaehler geometry, the tangential CR equations, Lorentzian geometry, holomorphic statistical manifolds, and paraquaternionic CR submanifolds.Intended as a tribute to Professor Aurel Bejancu, who discovered the notion of a CR submanifold of a Hermitian manifold in 1978, the book provides an up-to-date overview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike.

Classification Theory of Riemann Surfaces

Автор: Leo Sario; Mitsuru Nakai
Название: Classification Theory of Riemann Surfaces
ISBN: 3642482716 ISBN-13(EAN): 9783642482717
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The type problem evolved in the following somewhat overlapping steps: the Riemann mapping theorem, the classical type problem, and the existence of Green`s functions.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия