Moment Maps and Combinatorial Invariants of Hamiltonian Tn-spaces, Victor Guillemin
Автор: Gignoux Название: Solved Problems in Lagrangian and Hamiltonian Mechanics ISBN: 9048123925 ISBN-13(EAN): 9789048123926 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Intends to bridge the gap between the Newtonian mechanics and the studies on chaos. This title covers such topics as: Lagrangian, Hamiltonian and Jacobi formalisms, studies of integrable and quasi-integrable systems. It is suitable for undergraduate students as well as others whose work involves mechanics, physics and engineering in general.
Автор: Claude Gignoux; Bernard Silvestre-Brac Название: Solved Problems in Lagrangian and Hamiltonian Mechanics ISBN: 9400791763 ISBN-13(EAN): 9789400791763 Издательство: Springer Рейтинг: Цена: 9141.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This work bridges the gap between the well-known Newtonian mechanics and the studies on chaos, ordinarily reserved to experts. Several topics are treated: Lagrangian, Hamiltonian and Jacobi formalisms, studies of integrable and quasi-integrable systems.
Автор: Dmitry Treschev; Oleg Zubelevich Название: Introduction to the Perturbation Theory of Hamiltonian Systems ISBN: 3642261043 ISBN-13(EAN): 9783642261046 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents the basic methods of regular perturbation theory of Hamiltonian systems in an accessible fashion. It discusses all main aspects of the basic modern theory of perturbed Hamiltonian systems, and most results include complete proofs.
Описание: The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytopes, a convex polyhedron which sits inside the dual of the Lie algebra of G. This book is suitable for researchers and can be used as a semester text.
Автор: Helmut Hofer; Eduard Zehnder Название: Symplectic Invariants and Hamiltonian Dynamics ISBN: 3034896719 ISBN-13(EAN): 9783034896719 Издательство: Springer Рейтинг: Цена: 9781.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: One of the links is a class of sympletic invariants, called sympletic capacities, and these invariants are the main theme of this book. Topics covered include basic sympletic geometry, sympletic capacities and rigidity, sympletic fixed point theory, and a survey on Floer homology and sympletic homology.
Автор: Birgit Jacob; Hans J. Zwart Название: Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces ISBN: 3034808119 ISBN-13(EAN): 9783034808118 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems.
Автор: Juan-Pablo Ortega; Tudor S. Ratiu Название: Momentum Maps and Hamiltonian Reduction ISBN: 1475738137 ISBN-13(EAN): 9781475738131 Издательство: Springer Рейтинг: Цена: 11179.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The use of the symmetries of a physical system in the study of its dynamics has a long history that goes back to the founders of c1assical mechanics. Symmetry-based tech- niques are often implemented by using the integrals 01 motion that one can sometimes associate to these symmetries. The integrals of motion of a dynamical system are quan- tities that are conserved along the fiow of that system. In c1assieal mechanics symme- tries are usually induced by point transformations, that is, they come exc1usively from symmetries of the configuration space; the intimate connection between integrals of motion and symmetries was formalized in this context by NOETHER (1918). This idea can be generalized to many symmetries of the entire phase space of a given system, by associating to the Lie algebra action encoding the symmetry, a function from the phase space to the dual of the Lie algebra. This map, whose level sets are preserved by the dynamics of any symmetrie system, is referred to in modern terms as a momentum map of the symmetry, a construction already present in the work of LIE (1890). Its remarkable properties were rediscovered by KOSTANT (1965) and SOURlAU (1966, 1969) in the general case and by SMALE (1970) for the lifted action to the co tangent bundle of a configuration space. For the his tory of the momentum map we refer to WEINSTEIN (1983b) and MARSDEN AND RATIU (1999), 11. 2.
Автор: Mircea Puta Название: Hamiltonian Mechanical Systems and Geometric Quantization ISBN: 9401048800 ISBN-13(EAN): 9789401048804 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book is a revised and updated version of the lectures given by the author at the University of Timioara during the academic year 1990-1991. Its goal is to present in detail someold and new aspects ofthe geometry ofsymplectic and Poisson manifolds and to point out some of their applications in Hamiltonian mechanics and geometric quantization. The material is organized as follows. In Chapter 1 we collect some general facts about symplectic vector spaces, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study ofHamiltonian mechanics. We present here the gen- eral theory ofHamiltonian mechanicalsystems, the theory ofthe corresponding Pois- son bracket and also some examples ofinfinite-dimensional Hamiltonian mechanical systems. Chapter 3 starts with some standard facts concerning the theory of Lie groups and Lie algebras and then continues with the theory ofmomentum mappings and the Marsden-Weinstein reduction. The theory of Hamilton-Poisson mechan- ical systems makes the object of Chapter 4. Chapter 5 js dedicated to the study of the stability of the equilibrium solutions of the Hamiltonian and the Hamilton- Poisson mechanical systems. We present here some of the remarcable results due to Holm, Marsden, Ra iu and Weinstein. Next, Chapter 6 and 7 are devoted to the theory of geometric quantization where we try to solve, in a geometrical way, the so called Dirac problem from quantum mechanics. We follow here the construc- tion given by Kostant and Souriau around 1964.
Автор: Xavier Leoncini; Marc Leonetti Название: From Hamiltonian Chaos to Complex Systems ISBN: 1493900455 ISBN-13(EAN): 9781493900459 Издательство: Springer Рейтинг: Цена: 18284.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reviews progress in non-linear dynamics and statistical physics with an emphasis on complex systems, showing how tools developed for dynamical systems, nonlinear physics and statistical dynamics can open a panorama of research in physics and beyond.
Автор: P.H. Rabinowitz; A. Ambrosetti; I. Ekeland; E.J. Z Название: Periodic Solutions of Hamiltonian Systems and Related Topics ISBN: 9027725535 ISBN-13(EAN): 9789027725530 Издательство: Springer Рейтинг: Цена: 28929.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Proceedings of the NATO Advanced Research Workshop, Il Ciocco, Italy, October 13-17, 1986
Автор: Carles Sim? Название: Hamiltonian Systems with Three or More Degrees of Freedom ISBN: 9401059683 ISBN-13(EAN): 9789401059688 Издательство: Springer Рейтинг: Цена: 41925.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Proceedings of the NATO Advanced Study Institute, S`Agaro, Spain, June 19-30, 1995
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru