Описание: An exposition of hyperbolic functional differential inequalities and their applications. It aims to give a presentation of developments in the following problems: functional differential inequalities generated by initial and mixed problems; existence theory of local and global solutions; and, numerical methods of lines for hyperbolic problems.
Описание: On the occasion of the International Conference on Nonlinear Hyperbolic Problems held in St. Etienne, France, 1986 it was decided to start a two years cycle of conferences on this very rapidly expanding branch of mathematics and it*s applications in Continuum Mechanics and Aerodynamics.
Автор: Mass Per Pettersson; Gianluca Iaccarino; Jan Nords Название: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations ISBN: 3319107135 ISBN-13(EAN): 9783319107134 Издательство: Springer Рейтинг: Цена: 15672.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations
Автор: Rolf Jeltsch; Michael Fey Название: Hyperbolic Problems: Theory, Numerics, Applications ISBN: 3034897421 ISBN-13(EAN): 9783034897426 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The latter part of the 3rd millennium BC witnessed severe dislocations in the social, economic and political structures of the lands at the eastern end of the Mediterranean Sea - the Levant. This volume contains the papers given at a conference held in 2004 at the British Museum, presenting both new evidence and new theories bearing on this transitional period.
Автор: Heinrich Freist?hler; Gerald Warnecke Название: Hyperbolic Problems: Theory, Numerics, Applications ISBN: 3034895380 ISBN-13(EAN): 9783034895385 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Heinrich Freist?hler; Gerald Warnecke Название: Hyperbolic Problems: Theory, Numerics, Applications ISBN: 3034895372 ISBN-13(EAN): 9783034895378 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Numerically oriented articles study finite difference, finite volume, and finite ele- ment schemes, adaptive, multiresolution, and artificial dissipation methods.
Автор: Thomas H. Otway Название: Elliptic–Hyperbolic Partial Differential Equations ISBN: 3319197606 ISBN-13(EAN): 9783319197609 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Andreas Meister; Jens Struckmeier Название: Hyperbolic Partial Differential Equations ISBN: 3322802299 ISBN-13(EAN): 9783322802293 Издательство: Springer Рейтинг: Цена: 6524.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The following chapters summarize lectures given in March 2001 during the summerschool on Hyperbolic Partial Differential Equations which took place at the Technical University of Hamburg-Harburg in Germany. This type of meeting is originally funded by the Volkswa- genstiftung in Hannover (Germany) with the aim to bring together well-known leading experts from special mathematical, physical and engineering fields of interest with PhD- students, members of Scientific Research Institutes as well as people from Industry, in order to learn and discuss modern theoretical and numerical developments. Hyperbolic partial differential equations play an important role in various applications from natural sciences and engineering. Starting from the classical Euler equations in fluid dynamics, several other hyperbolic equations arise in traffic flow problems, acoustics, radiation transfer, crystal growth etc. The main interest is concerned with nonlinear hyperbolic problems and the special structures, which are characteristic for solutions of these equations, like shock and rarefaction waves as well as entropy solutions. As a consequence, even numerical schemes for hyperbolic equations differ significantly from methods for elliptic and parabolic equations: the transport of information runs along the characteristic curves of a hyperbolic equation and consequently the direction of transport is of constitutive importance. This property leads to the construction of upwind schemes and the theory of Riemann solvers. Both concepts are combined with explicit or implicit time stepping techniques whereby the chosen order of accuracy usually depends on the expected dynamic of the underlying solution.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru