Описание: The book introduces new ways of using analytic number theory in cryptography and related areas, such as complexity theory and pseudorandom number generation.Cryptographers and number theorists will find this book useful. The former can learn about new number theoretic techniques which have proved to be invaluable cryptographic tools, the latter about new challenging areas of applications of their skills.
Описание: In the last two decades, it has become clear how important the concept is, for the following reasons: (1) Combinatorics (or discrete mathematics) was considered by many to be a collection of interesting, sometimes deep, but mostly unrelated ideas.
Автор: Gross Название: Graph Theory & Its Applications, 3E ISBN: 1482249480 ISBN-13(EAN): 9781482249484 Издательство: Taylor&Francis Рейтинг: Цена: 13779.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Graph Theory and its Applications, Third Edition is the latest edition of the bestselling textbook for undergraduate courses in graph theory, yet expansive enough to be used for graduate courses. It takes a comprehensive, accessible approach to graph theory that integrates classical developments with emerging methods, models, and practical needs.
Автор: Dennis A. Hejhal; Joel Friedman; Martin C. Gutzwil Название: Emerging Applications of Number Theory ISBN: 0387988246 ISBN-13(EAN): 9780387988245 Издательство: Springer Рейтинг: Цена: 27951.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Most people tend to view number theory as the very paradigm of pure mathematics. With the advent of computers, however, number theory has been finding an increasing number of applications in practical settings, such as in cryptography, random number generation, coding theory, and even concert hall acoustics.
Автор: Shigeru Kanemitsu; K?lm?n Gyory Название: Number Theory and Its Applications ISBN: 0792359526 ISBN-13(EAN): 9780792359524 Издательство: Springer Рейтинг: Цена: 23751.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The contents of this volume range from expository papers on several aspects of number theory, intended for general readers (Steinhaus property of planar regions; Thus, Number Theory and Its Applications leads the reader in many ways not only to the state of the art of number theory but also to its rich garden.
Описание: This Volume Consists Of A Selection Of Research-Type Articles On Dynamical Systems, Evolution Equations, Analytic Number Theory And Closely Related Topics. A Strong Emphasis Is On A Fair Balance Between Theoretical And More Applied Work, Thus Spanning The Chasm Between Abstract Insight And Actual Application. Several Of The Articles Are Expected To Be In The Intersection Of Dynamical Systems Theory And Number Theory. One Article Will Likely Relate The Topics Presented To The Academic Achievements And Interests Of Prof. Leutbecher And Shed Light On Common Threads Among All The Contributions.Contributors Include:Professor Josef F Dorfmeister (Technische Universit?t M?nchen, Germany)Dr Dominik Eberlein (Logivations Gmbh, Germany)Professor Joachim Fischer (Siemens Kunststiftung, Germany)Professor Thomas Hagen (University Of Memphis, Usa)Professor Sandra Hayes (City University Of New York, Usa)Professor Bernhard Heim (German University Of Technology, Oman)Dr Andreas Henn (Technische Universit?t Dortmund, Germany)Professor Thomas Honold (Zhejiang University, China)Dr Michael Kiermaier (Universit?t Bayreuth, Germany)Professor Aloys Krieg (Rwth Aachen, Germany)Professor Hui Ma (Tsinghua University, China)Sabyasachi Mukherjee (Jacobs University Bremen, Germany)Professor Florian Rupp (German University Of Technology, Oman)Professor J?rgen Scheurle (Technische Universit?t M?nchen, Germany)Professor Dierk Schleicher (Jacobs University Bremen, Germany)Professor Hartmut Schwetlick (University Of Bath, Uk)Dr Stephan Schmitz (Technische Universit?t M?nchen, Germany)Professor Yuri Suris (Technische Universit?t Berlin, Germany)Professor Christian Wolf (City University Of New York, Usa)Professor Johannes Zimmer (University Of Bath, Uk)
Автор: Richard A. Mollin Название: Number Theory and Applications ISBN: 0792301498 ISBN-13(EAN): 9780792301493 Издательство: Springer Рейтинг: Цена: 58977.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Proceedings of the NATO Advanced Study Institute, Banff Centre, Canada, April 27-May 5, 1988
Автор: L.-K. Hua; Y. Wang Название: Applications of Number Theory to Numerical Analysis ISBN: 3642678319 ISBN-13(EAN): 9783642678318 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Owing to the developments and applications of computer science, ma- thematicians began to take a serious interest in the applications of number theory to numerical analysis about twenty years ago. But in the past twenty years, a number of new methods have been devised of which the number theoretic method is an effective one.
Автор: Shigeru Kanemitsu; K?lm?n Gyory Название: Number Theory and Its Applications ISBN: 1441948163 ISBN-13(EAN): 9781441948168 Издательство: Springer Рейтинг: Цена: 23751.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The contents of this volume range from expository papers on several aspects of number theory, intended for general readers (Steinhaus property of planar regions; Thus, Number Theory and Its Applications leads the reader in many ways not only to the state of the art of number theory but also to its rich garden.
Описание: This IMA Volume in Mathematics and its Applications Applications of Combinatorics and Graph Theory to the Biological and Social Sciences is based on the proceedings of a workshop which was an integral part of the 1987-88 IMA program on APPLIED COMBINATORICS.
Автор: Igor Shparlinski Название: Cryptographic Applications of Analytic Number Theory ISBN: 3034894155 ISBN-13(EAN): 9783034894159 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book introduces new techniques that imply rigorous lower bounds on the com- plexity of some number-theoretic and cryptographic problems. These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1.