Автор: Koller Daphne, Friedman Nir Название: Probabilistic Graphical Models: Principles and Techniques ISBN: 0262013193 ISBN-13(EAN): 9780262013192 Издательство: MIT Press Рейтинг: Цена: 21161.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.
Most tasks require a person or an automated system to reason -- to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.
Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Автор: Jia Zeng; Zhi-Qiang Liu Название: Type-2 Fuzzy Graphical Models for Pattern Recognition ISBN: 3662515229 ISBN-13(EAN): 9783662515228 Издательство: Springer Рейтинг: Цена: 14365.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book discusses how to combine type-2 fuzzy sets and graphical models to solve a range of real-world pattern recognition problems such as speech recognition, handwritten Chinese character recognition, topic modeling as well as human action recognition.
Автор: Whittaker, Joe Название: Graphical models in applied multivariate statistics ISBN: 0470743662 ISBN-13(EAN): 9780470743669 Издательство: Wiley Рейтинг: Цена: 10605.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: - It reveals the interrelationships between multiple variables and features of the underlying conditional independence. - It covers conditional independence, several types of independence graphs, Gaussian models, issues in model selection, regression and decomposition. - Many numerical examples and exercises with solutions are included.
Автор: M. Jorge Cardoso; Ivor Simpson; Tal Arbel; Doina P Название: Bayesian and grAphical Models for Biomedical Imaging ISBN: 3319122886 ISBN-13(EAN): 9783319122885 Издательство: Springer Рейтинг: Цена: 5590.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
N3 Bias Field Correction Explained as a Bayesian Modeling Method.- A Bayesian Approach to Distinguishing Interdigitated Muscles in the Tongue from Limited Diffusion Weighted Imaging.- Optimal Joint Segmentation and Tracking of Escherichia Coli in the Mother Machine.- Physiologically Informed Bayesian Analysis of ASL fMRI Data.- Bone Reposition Planning for Corrective Surgery Using Statistical Shape Model: Assessment of Differential Geometrical Features.- An Inference Language for Imaging.- An MRF-Based Discrete Optimization Framework for Combined DCE-MRI Motion Correction and Pharmacokinetic Parameter Estimation.- Learning Imaging Biomarker Trajectories from Noisy Alzheimer's Disease Data Using a Bayesian Multilevel Model.- Four Neuroimaging Questions that P-Values Cannot Answer (and Bayesian Analysis Can).- Spherical Topic Models for Imaging Phenotype Discovery in Genetic Studies.- A Generative Model for Automatic Detection of Resolving Multiple Sclerosis Lesions.
Автор: Heidi H. Andersen; Malene Hojbjerre; Dorte Sorense Название: Linear and Graphical Models ISBN: 0387945210 ISBN-13(EAN): 9780387945217 Издательство: Springer Рейтинг: Цена: 18167.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Provides an account of graphical models for multivariate complex normal distributions. Beginning with an introduction to the multivariate complex normal distribution, the authors develop the marginal and conditional distributions of random vectors and matrices. Then they introduce complex MANOVA models and hypothesis testing for these models.
Описание: Constructing Subject- and Disease-Specific Effect Maps: Application to Neurodegenerative Diseases.- BigBrain: Automated Cortical Parcellation and Comparison with Existing Brain Atlases.- LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR Images.- Landmark-based Alzheimer's Disease Diagnosis Using Longitudinal Structural MR Images.- Inferring Disease Status by non-Parametric Probabilistic Embedding.- A Lung Graph-Model for Pulmonary Hypertension and Pulmonary Embolism Detection on DECT Images.- Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Study.- Automatic Segmentation of Abdominal MRI Using Selective Sampling and Random Walker.- Gaze2Segment: A Pilot Study for Integrating Eye-Tracking Technology into Medical Image Segmentation.- Automatic Detection of Histological Artifacts in Mouse Brain Slice Images.- Lung Nodule Classification by Jointly Using Visual Descriptors and Deep Features.- Representation Learning for Cross-Modality Classification.- Guideline-based Machine Learning for Standard Plane Extraction in 3D Cardiac Ultrasound.- A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images.- Bayesian Multiview Manifold Learning Applied to Hippocampus Shape and Clinical Score Data.- Rigid Slice-To-Volume Medical Image Registration through Markov Random Fields.- Sparse Probabilistic Parallel Factor Analysis for the Modeling of PET and Task-fMRI data.- Non-local Graph-based Regularization for Deformable Image Registration.- Unsupervised Framework for Consistent Longitudinal MS Lesion Segmentation.
The monographic volume addresses, in a systematic and comprehensive way, the state-of-the-art dependability (reliability, availability, risk and safety, security) of systems, using the Artificial Intelligence framework of Probabilistic Graphical Models (PGM). After a survey about the main concepts and methodologies adopted in dependability analysis, the book discusses the main features of PGM formalisms (like Bayesian and Decision Networks) and the advantages, both in terms of modeling and analysis, with respect to classical formalisms and model languages.
Methodologies for deriving PGMs from standard dependability formalisms will be introduced, by pointing out tools able to support such a process. Several case studies will be presented and analyzed to support the suitability of the use of PGMs in the study of dependable systems.
Автор: Unwin Название: Graphical Data Analysis with R ISBN: 1498715230 ISBN-13(EAN): 9781498715232 Издательство: Taylor&Francis Рейтинг: Цена: 11482.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
See How Graphics Reveal Information
Graphical Data Analysis with R shows you what information you can gain from graphical displays. The book focuses on why you draw graphics to display data and which graphics to draw (and uses R to do so). All the datasets are available in R or one of its packages and the R code is available at rosuda.org/GDA.
Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. This book guides you in choosing graphics and understanding what information you can glean from them. It can be used as a primary text in a graphical data analysis course or as a supplement in a statistics course. Colour graphics are used throughout.
Автор: Russell R. Barton Название: Graphical Methods for the Design of Experiments ISBN: 0387947507 ISBN-13(EAN): 9780387947501 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Graphical Methods for Experimental Design presents a strategic view of the planning of experiments, and provides a number of graphical tools that are useful for justifying the effort required for experimentation, identifying variables and candidate statistical models, selecting the set of run conditions and for assessing the quality of the design.
Описание: New Methods of Geostatistical Analysis and Graphical Presentation
Автор: Albert Название: A Graphical View Of Baseball ISBN: 1498782752 ISBN-13(EAN): 9781498782753 Издательство: Taylor&Francis Рейтинг: Цена: 4592.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Visualizing Baseball provides a visual exploration of the game of baseball. Graphical displays are used to show how measures of performance, at the team level and the individual level, have changed over the history of baseball. Graphs of career trajectories are helpful for understanding the rise and fall of individual performances of hitters and pitchers over time. One can measure the contribution of plays by the notion of runs expectancy. Graphs of runs expectancy are useful for understanding the importance of the game situation defined by the runners on base and number of outs. Also the runs measure can be used to quantify hitter and pitch counts and the win probabilities can be used to define the exciting plays during a baseball game. Special graphs are used to describe pitch data from the PitchFX system and batted ball data from the Statcast system. One can explore patterns of streaky performance and clutch play by the use of graphs, and special plots are used to predict final season batting averages based on data from the middle of the season.
This book was written for several types of readers. Many baseball fans should be interested in the topics of the chapters, especially those who are interested in learning more about the quantitative side of baseball. Many statistical ideas are illustrated and so the graphs and accompanying insights can help in promoting statistical literacy at many levels. From a practitioner's perspective, the chapters offer many illustrations of the use of a modern graphics system and R scripts are available on an accompanying website to reproduce and potentially improve the graphs in this book.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru