Описание: This monograph is the first to provide readers with numerical tools for a systematic analysis of bifurcation problems in reaction-diffusion equations. Readers will gain a thorough understanding of numerical bifurcation analysis and the necessary tools for investigating nonlinear phenomena in reaction-diffusion equations.
Описание: This monograph is the first to provide readers with numerical tools for a systematic analysis of bifurcation problems in reaction-diffusion equations. Readers will gain a thorough understanding of numerical bifurcation analysis and the necessary tools for investigating nonlinear phenomena in reaction-diffusion equations.
Автор: Michal Fe?kan Название: Topological Degree Approach to Bifurcation Problems ISBN: 9048179696 ISBN-13(EAN): 9789048179695 Издательство: Springer Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 1. Introduction 1.1. Preface 1.2. An Illustrative Perturbed Problem 1.3. A Brief Summary of the Book 2. Theoretical Background 2.1. Linear Functional Analysis 2.2. Nonlinear Functional Analysis 2.2.1. Implicit Function Theorem 2.2.2. Lyapunov-Schmidt Method 2.2.3. Leray-Schauder Degree 2.3. Differential Topology 2.3.1. Differentiable Manifolds 2.3.2. Symplectic Surfaces 2.3.3. Intersection Numbers of Manifolds 2.3.4. Brouwer Degree on Manifolds 2.3.5. Vector Bundles 2.3.6. Euler Characteristic 2.4. Multivalued Mappings 2.4.1. Upper Semicontinuity 2.4.2. Measurable Selections 2.4.3. Degree Theory for Set-Valued Maps 2.5. Dynamical Systems 2.5.1. Exponential Dichotomies 2.5.2. Chaos in Discrete Dynamical Systems 2.5.3. Periodic O.D.Eqns 2.5.4. Vector Fields 2.6. Center Manifolds For Infinite Dimensions 3. Bifurcation of Periodic Solutions 3.1. Bifurcation of Periodics from Homoclinics I 3.1.1. Discontinuous O.D.Eqns 3.1.2. The Linearized Equation 3.1.3. Subharmonics for Regular Periodic Perturbations 3.1.4. Subharmonics for Singular Periodic Perturbations 3.1.5. Subharmonics for Regular Autonomous Perturbations 3.1.6. Applications to Discontinuous O.D.Eqns 3.1.7. Bounded Solutions Close to Homoclinics 3.2. Bifurcation of Periodics from Homoclinics II 3.2.1. Singular Discontinuous O.D.Eqns 3.2.2. Linearized Equations 3.2.3. Bifurcation of Subharmonics 3.2.4. Applications to Singular Discontinuous O.D.Eqns 3.3. Bifurcation of Periodics from Periodics 3.3.1. Discontinuous O.D.Eqns 3.3.2. Linearized Problem 3.3.3. Bifurcation of Periodics in Nonautonomous Systems 3.3.4. Bifurcation of Periodics in Autonomous Systems 3.3.5. Applications to Discontinuous O.D.Eqns 3.3.6. Concluding Remarks 3.4. Bifurcation of Periodics in Relay Systems 3.4.1. Systems with Relay Hysteresis 3.4.2. Bifurcation of Periodics 3.4.3. Third-Order O.D.Eqns with Small Relay Hysteresis 3.5. Nonlinear Oscillators with Weak Couplings 3.5.1. Weakly Coupled Systems 3.5.2. Forced Oscillations from Single Periodics 3.5.3. Forced Oscillations from Families of Periodics 3.5.4. Applications to Weakly Coupled Nonlinear Oscillators 4. Bifurcation of Chaotic Solutions 4.1. Chaotic Differential Inclusions 4.1.1. Nonautonomous Discontinuous O.D.Eqns 4.1.2. The Linearized equation 4.1.3. Bifurcation of Chaotic Solutions 4.1.4. Chaos from Homoclinic Manifolds 4.1.5. Almost and Quasi Periodic Discontinuous O.D.Eqns 4.2. Chaos in Periodic Differential Inclusions 4.2.1. Regular Periodic Perturbations 4.2.2. Singular Differential Inclusions 4.3. More about Homoclinic Bifurcations 4.3.1. Transversal Homoclinic Crossing Discontinuity 4.3.2. Homoclinic Sliding on Discontinuity 5. Topological Transversality 5.1. Topological Transversality and Chaos 5.1.1. Topologically Transversal Invariant Sets 5.1.2. Difference Boundary Value Problems 5.1.3. Chaotic Orbits 5.1.4. Periodic Points and Extensions on Invariant Compact Subsets 5.1.5. Perturbed Topological Transversality 5.2. Topological Transversality and Reversibility 5.2.1. Period Blow-up 5.2.2. Period Blow-up for Reversible Diffeomorphisms 5.2.3. Perturbed Period Blow-up 5.2.4. Perturbed Second Order O.D.Eqns 5.3. Chains of Reversible Oscillators 5.3.1. Homoclinic Period Blow-up for Breathers 5.
Автор: C. Bardos; J. M. Lasry; M. Schatzman Название: Bifurcation and Nonlinear Eigenvalue Problems ISBN: 3540097589 ISBN-13(EAN): 9783540097587 Издательство: Springer Рейтинг: Цена: 5583.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Michal Fe?kan Название: Topological Degree Approach to Bifurcation Problems ISBN: 1402087233 ISBN-13(EAN): 9781402087233 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: MITTELMANN; FISCHER Название: Continuation Techniques and Bifurcation Problems ISBN: 3764323973 ISBN-13(EAN): 9783764323974 Издательство: Springer Рейтинг: Цена: 11179.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In many cases continuation procedures are used as part of a more complete analysis of a nonlinear problem, based on bifurcation theory and singularity theory.
Автор: S.-N. Chow; J. K. Hale Название: Methods of Bifurcation Theory ISBN: 1461381614 ISBN-13(EAN): 9781461381617 Издательство: Springer Рейтинг: Цена: 12157.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An alternative title for this book would perhaps be Nonlinear Analysis, Bifurcation Theory and Differential Equations. Static bifurcation theory is concerned with the changes that occur in the structure of the set of zeros of a function as parameters in the function are varied.
Автор: Richard H. Rand; Dieter Armbruster Название: Perturbation Methods, Bifurcation Theory and Computer Algebra ISBN: 0387965890 ISBN-13(EAN): 9780387965895 Издательство: Springer Рейтинг: Цена: 12157.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Perturbation methods have always been an important tool for treating nonlinear differential equations. Methods covered include: Lindstedt`s method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction.
Автор: David H. Sattinger; P. Olver Название: Group Theoretic Methods in Bifurcation Theory ISBN: 3540097155 ISBN-13(EAN): 9783540097150 Издательство: Springer Рейтинг: Цена: 6288.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Martin Golubitsky; David G. Schaeffer Название: Singularities and Groups in Bifurcation Theory ISBN: 1461295335 ISBN-13(EAN): 9781461295334 Издательство: Springer Рейтинг: Цена: 25155.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob- lems and we hope to convert the reader to this view.
Автор: Q.S. Nguyen Название: Bifurcation and Stability of Dissipative Systems ISBN: 3211824375 ISBN-13(EAN): 9783211824375 Издательство: Springer Рейтинг: Цена: 12157.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The first theme concerns the plastic buckling of structures in the spirit of Hill`s classical approach. In brittle fracture or brittle damage, the evolution law of crack lengths or damage parameters is time-independent like in plasticity and leads to a similar mathematical description of the quasi-static evolution.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru